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Introduction

Double-entry bookkeeping illustrates one of the most astonishing examples of intellectual insulation between disciplines, in this case, between accounting and mathematics.  Double-entry bookkeeping (DEB) was developed during the fifteenth century and was recorded in 1494 as a system by the Italian mathematician Luca Pacioli [1494].  Double-entry book​keeping has been used for over five centuries in commercial accounting systems.  Remarkably, however, the mathematical formulation for DEB—algebraic operations on ordered pairs of numbers—is little known, particularly in the field of accounting.  This formulation also shows how the double entry method can be extended from scalars to vectors, fractions, and more general ordered pairs—and it thereby shows that the two-sidedness of the ordered pairs is what is "double" in the method.

The mathematical basis for a precise treatment of DEB was developed in the nineteenth century by Sir William Rowan Hamilton as an abstract mathematical construction using ordered pairs to deal with the complex numbers and the rationals (fractions) [Hamilton 1837].  The multiplicative version of this construction is the "group of fractions" which uses ordered pairs of whole numbers (written vertically) to enlarge the system of positive whole numbers to the system of positive fractions containing multiplicative inverses (just reverse the entries in a fraction to get its inverse).  The ordered pairs construction that is relevant to conventional DEB is the additive case called the "group of differences."
  It is used to construct a number system with "additive inverses" by using operations on ordered pairs of positive numbers (including zero).  All that is required to grasp the connection with DEB is to make the identification:

ordered pairs (horizontally written) of numbers in group of differences construction 

= two-sided T-accounts of DEB (debits on the left side and credits on the right side).  

In view of this identification, the group of differences (or fractions in the multiplicative case) will be called the Pacioli group.  

In spite of some attention to DEB by mathematicians [e.g., DeMorgan 1869, Cayley 1894, and Kemeny et al. 1962], this connection has been little noticed in mathematics (not to mention in accounting).  One rather solitary exception is the following passage in a semi-popular book by D. E. Littlewood.

The bank associates two totals with each customer's account, the total of moneys credited and the total of moneys withdrawn.  The net balance is then regarded as the same if, for example, the credit amounts of £102 and the debit £100, as if the credit were £52 and the debit £50.  If the debit exceeds the credit the balance is negative.


This model is adopted in the definition of signed integers.  Consider pairs of cardinal numbers (a, b) in which the first number corresponds to the debit, and the second to the credit.  [1960, 18]

Arthur Cayley (1821-1895) was one of the few mathematicians who wrote about double-entry bookkeeping.  In the year before his death, he published a small pamphlet The Principles of Book-keeping by Double Entry in which he wrote:

The Principles of Book-keeping by Double Entry constitute a theory which is mathematically by no means uninteresting: it is in fact like Euclid's theory of ratios an absolutely perfect one, and it is only its extreme simplicity which prevents it from being as interesting as it would otherwise be. [Cayley 1984, Preface]

In the pamphlet, Cayley only described double-entry bookkeeping in the practical informal terms familiar from his fourteen years of work as a lawyer.  In his Presidential Address to the British Association for Advancement of Science, he hinted that the "notion of a negative magnitude" is "used in a very refined manner in bookkeeping by double entry" [Cayley 1896, 434].  In neither place did Cayley present the ordered pairs treatment of T-accounts.  However the reference to the theory of ratios in Euclid is promising in that it is related to the group of fractions.

If four numbers be proportional, the number produced from the first and fourth will be equal to the number produced from the second and third; [and conversely] [Euclid 1926, Book VII, Proposition 19]

The translator and commentator, Sir Thomas Heath, points out that, in modern notation, this is "If a:b = c:d, then ad = bc; and conversely" [Commentary in Euclid 1926, 319]. This is precisely the equality condition (equality of cross-multiples) in the multiplicative group of fractions used here for multiplicative DEB.

With these exceptions, the author has not been able to find a single mathematics book, elementary or advanced, popular or esoteric, which notes that the ordered pairs of the group of differences construction are the T-accounts used in the business world for about five centuries.  

One acid test of a mathematical formulation of a theory is the question of whether or not it facilitates the generalization of the theory.  Normal bookkeeping does not deal with incommensurate physical quantities; everything is expressed in the common units of money.  Is there a generalization of DEB to deal with multi-dimensional incommensurates with no common measure of value?  

In the literature on the mathematics of accounting there was a proposed "solution" to this question, a system of multi-dimensional physical accounting [see Ijiri 1965, 1966, and 1967].  In this system, most of the normal structure of DEB was lost:

• there was no balance sheet equation,

• there were no equity or proprietorship accounts,

• the temporary or nominal accounts could not be closed, and

• the "trial balance" did not balance.

It is common for certain aspects of a theory to be lost in a generalization of the theory.  The accounting community had apparently accepted the failure of all these features of DEB as the necessary price to be paid to generalize DEB to incommensurate physical quantities.  For instance, the systems of "Double-entry multidimensional accounting" previously published in the accounting literature [see also Charnes et al. 1972, 1976, or Haseman and Whinston 1976] had acquiesced in the absence of the balance-sheet equation.

For instance, the convenient idea of an accounting identity is lost since the dimensional and metric comparability it assumes is no longer present except under special circumstances. [Ijiri 1967, 333]

However, when DEB is mathematically formulated using the group of differences, then the generalization to vectors of incommensurate physical quantities is immediate and trivial.  All of the above normal features of DEB— 1) the balance-sheet equation; 2) the equity account; 3) the temporary accounts; and 4) the trial balance—are preserved in the generalization.  Thus the "accepted" generalized model of DEB was simply a failed attempt at generalization.  

Since the n-dimensional vector generalization of (additive) DEB has been published a number of times  [see Ellerman 1982, 1986, 1995], my purpose here is to exploit the connection between the additive group of differences and the multiplicative group of fractions to develop a multiplicative example as well as an abstract general treatment of double-entry bookkeeping.  Our approach will be to first review the additive-multiplicative analogies in the construction of the Pacioli groups, then the treatment of additive accounting using scalar and vectorial T-accounts, and finally carry over the machinery to the multiplicative case and the general case.

The Pacioli Groups: Additive-Multiplicative Analogies

Multi-dimensional additive accounting is based on the group of differences or Pacioli group construction starting with non-negative vectors.  The usual case of scalar accounting can be identified with the special case using one dimensional vectors.  A vector x = (x1,...,xn) is non-negative if and only if all its components xi are non-negative (positive or zero).  The ordered pairs of non-negative vectors will be called (additive) T-accounts.  The left-hand side (LHS) vector d is the debit entry and the right-hand side (RHS) vector c is the credit entry.

Additive T-account: [ d // c ] = [ debit vector // credit vector ].

In the multiplicative case, a T-account is an ordered pair of whole numbers or integers (written with the usual single slash) where the two integers are the debit integer and credit integer.  For our purposes, we can restrict ourselves to strictly positive integers (the "natural numbers") in the debit and credit entries.

Multiplicative T-account: (d/c) = (debit integer / credit integer).

In order to illustrate the additive-multiplicative analogy between additive and multiplicative T-accounts, the basic definitions will be developed in parallel columns.

	
	Additive Case
	Multiplicative Case

	Operation on T-accounts
	T-accounts add together by adding debits to debits and credits to credits

[ w // x ] + [ y // z ] = [ w+y // x+z ].
	T-accounts multiply together by multiplying debit times debit entries and credit times credit entries

(w/x)(y/z) = (wy/xz).

	Identity element for operation
	The identity element for addition is the zero T-account [ 0 // 0 ].
	The identity element for multiplication is the unit T-account (1/1).

	Equality between two T-accounts.
	 Given two T-accounts [ w // x ] and [ y // z ], the cross-sums are the two vectors obtained by adding the credit entry in one T-account to the debit entry in the other T-account.  The equivalence relation between T-accounts is defined by setting two T-accounts equal if their cross-sums are equal:

[ w // x ] = [ y // z ]  if w+z = x+y.
	Given two T-accounts (w/x) and (y/z), the cross-multiples are the two integers obtained by multiplying the debit entry of one with the credit entry of the other.  The equivalence relation between T-accounts is defined by setting two T-accounts equal if their cross-multiples are equal:

(w/x) = (y/z) if wz = xy.



	Inverses
	The negative or additive inverse of a T-account is obtained by reversing the debit and credit entries:

– [ w // x] = [ x // w ].
	The multiplicative inverse of a T-account is obtained by reversing the debit and credit entries:

(w/x)–1 = (x/w).

	"Disjointness" of two T-accounts
	Given two vectors x = (x1,...,xn) and y = (y1,...,yn), let max(x,y) be the vector with the maximum of xi and yi as its ith component, and let min(x,y) be the vector with the minimum of xi and yi as its ith component.  

Two non-negative vectors x and y are said to be disjoint if min(x,y) = 0. 
	Given two integers w and x, let lcm(w,x) be the least common multiple of w and x, and let gcd(w,x) be the greatest common divisor of w and x (the largest integer dividing both).  

Two integers w and x are said to be relatively prime if gcd(w,x) = 1.

	"Reduced form" for a T-account
	A T-account [x // y] is in reduced form if x and y are disjoint.
	A T-account (w/x) is in lowest terms if w and x are relatively prime.

	Unique reduced form representation
	Every T-account [x // y] has a unique reduced representation 

[x–min(x,y) // y–min(x,y)].
	Each T-account (w/x) has a unique representation in lowest terms

(w/gcd(w,x))/(x/gcd(w,x)).

	Example
	Consider the T-account 

[(12, 3, 8) // (10, 5, 4)].

The minimum of the debit and credit vectors is (10, 3, 4) so the reduced form representation is 

[(2, 0, 4) //(0, 2, 0)].
	Consider the T-account

(28/35).

The greatest common divisor of the debit and credit entries is 7 so the T-account in lowest terms is

(4/5).


The (additive) Pacioli group Pn consists of the ordered pairs [x // y] of non-negative n-dimensional vectors, with the above definition of addition and equality.  The Pacioli group Pn is isomorphic with all of Rn (the set of all n-vectors with positive and negative components) under two isomorphisms: the debit isomorphism, which maps [w // x] to w–x, and the credit isomorphism, which maps [w // x] to x–w.  In order to translate from T-accounts  [x // y] back and forth to general vectors z, one needs to specify whether to use the debit or credit isomorphism.
  This will be done by labeling the T-account as debit balance or credit balance.  Thus if a T-account  [x // y] is debit balance, the corresponding vector is x–y, and if it is credit balance, then the corresponding vector is y–x.  

The multiplicative Pacioli group consists of the multiplicative T-accounts (d/c) where d and c are natural numbers (i.e., positive whole numbers), with the above definitions of multiplication and equality.  Since zero is not included, it is quite symmetrical as a multiplicative group in the sense that it is isomorphic in two ways to the multiplicative system of positive rationals Q+.  The latter might be represented as the positive real numbers whose decimal expansion eventually has a repeating block of digits.  For instance, the T-account (45/22) would be mapped by the debit isomorphism to 2.045 where the underlined block of digits repeats itself as in 2.0454545… (which is the decimal expansion of 45 divided by 22).  The credit isomorphism would map (45/22) to 0.48 or 0.48888… (which is just the decimal expansion of 22 divided by 45).  Since  use of the reals with repeating decimals is a rather clumsy way to deal with the positive rationals, I will use fractions without parentheses to represent the positive rationals.
  Thus the debit isomorphism maps (45/22) to and from 45/22 while the credit isomorphism maps (45/22) to and from 22/45.  The two isomorphisms result from the fact that the Pacioli group is isomorphic to itself under the "taking inverses" transformation that reverses the entries in the ordered pairs (in both the additive and multiplicative cases).  In the multiplicative case, this means that the multiplicative structure of the positive rationals less than one is isomorphic to the multiplicative structure of the positive rationals greater than one with "taking inverses" (i.e., reciprocals) as the mapping.

The Double-Entry Method: Scalar Additive Case

Given an additive equation w + ... + x = y + ... + z, or for that matter, a multiplicative equation w…x = y…z, it is not possible to change just one term in the equation and have it still hold.  Two or more terms must be changed.  The fact that two or more terms (or "accounts") must be changed is not the basis for the double-entry method.  That mathematical fact is a characteristic of the transaction itself (the changes in the equation), not a characteristic of the method of recording the transaction.  The double-entry method is a method of encoding an equation using ordered pairs or T-accounts and using unsigned numbers (non-negative numbers) to record transactions to make changes in the equation.  While there is unfortunately considerable confusion about this in the accounting literature, the doubleness of "double-entry" is the two-sidedness of the T-accounts and the mathematical properties that follow (e.g., equal debits and credits in a transaction, and equal debits and credits in the trial balance of the whole set of accounts or ledger).  

The alternative to the double entry method is to record a transaction by making a single entry of adding a signed (positive or negative) number to each affected account.  Two or more accounts in the equation would always be affected by this alternative method of recording a transaction (since that is a property of the transaction itself, not of the recording method).  Such a system is a complete accounting system to update the balance sheet equation but would have no two-sided T-accounts, no debits or credits, no double entry principle (equal debits and credits in a transaction), and no trial balance of adding debits and credits.  Unfortunately, the phrase "single entry accounting" is also used to denote simply an incomplete accounting "system" (e.g., no equity account) where there is no equation to be updated.  But without an equation, that is not an alternative system at all.  The choice between the double entry and single entry methods of recording a transaction is the choice between using unsigned ("single-sided") numbers in two-sided accounts or signed ("two-sided") numbers in "single-sided" accounts.  

The additive Pacioli group uses ordered pairs of non-negative vectors or, in the one dimensional or scalar case, non-negative numbers, so that negative numbers do not appear in the vectors or scalars of the double-entry method.  They may certainly appear in the equations before the encoding into the double-entry method of updating the equation and after the decoding to obtain the ending equation.

The focus of this section is to briefly present the double-entry method in the scalar additive case which is most familiar.  Then that is generalized to the general additive case using vectors in the next section, then to the multiplicative case, and finally to the general case.

Consider an example of a company with the simplified initial balance sheet equation:


Assets
=
Liabilities
+
Equity


15000
=
10000
+
5000.

Beginning Scalar Balance Sheet

It is customary in accounting (although not mathematically necessary) to move each term or "account" to the side of the equation so that it is preceded by a plus sign.  A T-account equal to the zero T-account [0 // 0] is called a zero-account.  Equations encode as zero-accounts.  Each left-hand side (LHS) term x is encoded as a debit-balance T-account [x // 0] and each right-hand side (RHS) term y is encoded as a credit-balance T-account [0 // y].  These T-accounts then would add up to the zero-account [0 // 0].  The balance sheet equation thus encodes as an equation zero-account which, by leaving out the plus signs, becomes the following initial ledger of T-accounts.


Assets
Liabilities
Equity


[15000 // 0]
[0 // 10000]
[0 // 5000]

Beginning Ledger of T-Accounts 

A transaction will change two or more of the accounts.  DEB is a system of recording transactions that uses the double-sided T-accounts of non-negative numbers.  Any other way of recording the transaction (e.g., using signed positive and negative numbers) would also have to change two or more accounts in an equation.  For instance, suppose we subtract 1200 from the Assets and Equity terms in the original equation.  That yields a new equation using operations with signed numbers and is not the double-entry method.  The double-entry method encodes the transactions in T-accounts of unsigned numbers (or, to be less pedantic, non-negative numbers) and then adds those T-accounts to the appropriate T-accounts in the equation zero-account.

Consider three transactions in a productive firm.

1.
$1200 of input inventories are used up and charged directly to equity.

2.
$1500 of product is produced, sold, and added directly to equity.

3.
$800 principal payment is made on a loan.

Each transaction is then encoded as a transactional zero-account and added to the appropriate terms of the equational zero-account.  For instance, the first transaction subtracts 1200 from Assets and subtracts 1200 from Equity.  The Assets account is encoded as a LHS or debit-balance account so the subtracting of a number from it would be encoded as adding the T-account [0 // 1200] to it.  Equity is encoded as a RHS or credit-balance term so subtracting 1200 from it would be encoded as adding [1200 // 0] to it.  The other transactions are encoded in a similar manner.


Assets
Liabilities
Equity

Original equation zero-account:
[15000 // 0]
[0 // 10000]
[0 // 5000]

+Transaction 1 zero-account:
[0 // 1200]

[1200 // 0]

+Transaction 2 zero-account:
[1500 // 0]

[0 // 1500]

+Transaction 3 zero-account:
[0 // 800]
[800 // 0]



= Ending equation zero-account:
[16500 // 2000]
[800 // 10000]
[1200 // 6500]

= (in reduced form)
[14500 // 0]
[0 // 9200]
[0 // 5300].

Initial Ledger + Journal = Ending Ledger

The initial T-accounts in the ledger add up to the zero account (initial trial balance).  Each transaction is encoded as two or more T-accounts that add to the zero-account (double entry principle).  Zero added to zero equals zero.  Thus adding the transaction zero-accounts to the initial equation zero-account (posting journal to ledger) will yield another equation zero-account (which can be checked by taking another trial balance).  Each T-account is then decoded according to how whether it was encoded as debit balance or credit balance to obtain the ending balance sheet equation.


Assets
=
Liabilities
+
Equity


14500
=
9200
+
5300.

Ending Balance Sheet Equation

The Double-Entry Method: General Additive Case

The general additive case of the double-entry method starts with an equation between sums of n-dimensional vectors.
  Vector equations are first encoded in the Pacioli group constructed from the non-negative n-dimensional vectors.  Since the vectors in a T-account must be non-negative, we must first develop a way to separate out the positive and negative components of a vector.  The positive part of a vector x is x+ = max(x,0), the maximum of x and the zero vector [note that "0" is used, depending on the context, to refer to the zero scalar or the zero vector].  The negative part of x is x– = –min(x,0), the negative of the minimum of x and the zero vector.  Both the positive and negative parts of a vector x are non-negative vectors.
  Every vector x has a "Jordan decomposition" x = x+ – x–.  The two isomorphisms that map vectors to T-accounts of non-negative vectors are the debit isomorphism that maps x to the T-account [x+ // x–] and the credit isomorphism that maps x to [x– // x+].

Given any equation in Rn, w + ... + x = y + ... + z, each left-hand side (LHS) vector x is encoded via the debit isomorphism as a debit-balance T-account [x+ // x–] and each right-hand side (RHS) vector y is encoded via the credit isomorphism as a credit-balance T-account [y– // y+].  Then the original equation holds if and only the sum of the encoded T-accounts is a zero-account:

w + ... + x = y + ... + z

if and only if

 [w+ // w–] + ... + [x+ // x–] + [y– // y+] + ... + [z– // z+] is a zero-account.

Encoding an Equation as an Equation Zero-Account

Given the equation, the sum of the encoded T-accounts is the equation zero-account of the equation.  Since only plus signs can appear between the T-accounts in an equational zero-account, the plus signs can be left implicit.  The listing of the T-accounts in an equational zero-account (without the plus signs) is the ledger.

Changes in the various terms or "accounts" in the beginning equation are recorded as transactions.  Transactions must be recorded as valid algebraic operations which transform equations into equations.  Since equations encode as zero-accounts, a valid algebraic operation would transform zero-accounts into zero-accounts.  There is only one such operation in the Pacioli group: add on a zero-account.  Zero plus zero equals zero.  The zero-accounts representing transactions are called transaction zero-accounts.  The listing of the transactional zero-accounts is the journal.

A series of valid additive operations on a vector equation can then be presented in the following standard scheme:


Beginning Equation Zero-Account


+
Transaction Zero-Accounts


=
Ending Equation Zero-Account

or, in more conventional terminology,



   Beginning Ledger 



+ Journal 



= Ending Ledger.

The process of adding the transaction zero-accounts to the initial ledger to obtain the ledger at the end of the accounting period is called posting the journal to the ledger.  The fact that a transaction zero-account is equal to [0 // 0] is traditionally expressed as the double-entry principle that transactions are recorded with equal debits and credits.  The summing of the debit and credit sides of what should be an equation zero-account to check that it is indeed a zero-account is traditionally called the trial balance.  All those features from scalar case of DEB carry over to the general vector case, and, mutatus mutandis, to the multiplicative case.

At the end of the cycle, the ending equational zero-account is decoded to obtain the equation that results from the algebraic operations represented in the transactions.  The T-accounts in an equational zero-account can be arbitrarily partitioned into two sets: DB (debit balance) and CB (credit balance).  T-accounts [w // x] in DB are decoded as w–x on the left side of the equation, and T-accounts [w // x] in CB are decoded as x–w on the right side of the equation.  Given a zero-account, this algorithm yields an equation.  In an accounting application, the T-accounts in the final equation zero-account would be partitioned into sets DB and CB according to the side of the initial equation from which they were encoded. 

Consider the following initial vector equation:

(6, –3, 10) + (–2, 5, –2) = (4, 2, 8).

Sample Vector Equation to be Encoded

It encodes as the equation zero-account

[(6, 0, 10) // (0, 3, 0)] + [(0, 5, 0) // (2, 0, 2)] + [(0, 0, 0) // (4, 2, 8)].

Equation Encoded as a Zero T-Account

Suppose that the transaction would subtract the vector (–2, –9, 1) from the first vector on the LHS and from the vector on the RHS side of the original equation to obtain the ending equation: 

(8, 6, 9) + (–2, 5, –2) = (6, 11, 7).

To perform this operation using the double-entry method, the subtracting of the vector (–2, –9, 1) from the first LHS term is encoded using the credit isomorphism to get [(2,9,0)//(0,0,1)] which is added to the first LHS or debit-balance term in the T-account version of the original equation.  In more traditional terminology, we would say that (–2, –9, 1) is "credited" to that debit-balance account.  For the subtraction from the RHS term, the vector is encoded using the debit isomorphism to obtain [(0,0,1)//(2,9,0)] and added to the credit-balance T-account version of the RHS term.  That is, (–2, –9, 1) is "debited" to that credit-balance account.  This yields another equational zero-account:

Original Equation zero-account:
[(6,0,10)//(0,3,0)] + [(0,5,0)//(2,0,2)] + [(0,0, 0)//(4,2,8)]

+ Transaction zero-account:

[(2,9,0)//(0,0,1)]


+ [(0,0,1)//(2,9,0)]
Ending equation zero-account:
[(8,9,10)//(0,3,1)] +  [(0,5,0)//(2,0,2)] + [(0,0,1)//(6,11,8)].

After a number of such transactions, the ending equation zero-account is then decoded to obtain an equation back in Rn.  In this case, let the first two T-accounts be debit-balance and the third one credit-balance (as they were originally encoded).  Then the ending equational zero-account decodes as the vector equation

(8, 6, 9) + (–2, 5, –2) = (6, 11, 7).

Decoded Ending Equation

In the scalar case, a T-account will always have a reduced form either as [d // 0] or [0 // c] so that adding [d // 0] to an account (a term in the equational zero-account) can be described as "debiting d to the account" and similarly for "crediting c to the account."  For vector T-accounts, the reduced form of a T-account does not necessarily have the zero vector on one side or the other.  In the case above, the reduced form of the T-account encoding of  (–2, –9, 1) would be "mixed."  The "debit" takes the form of adding the T-account [(0,0,1)//(2,9,0)] obtained using the debit isomorphism to a term, and the "credit" takes the form of adding the inverse [(2,9,0)//(0,0,1)] obtained by the credit isomorphism to another term.  In multiplicative accounting, we will find that our T-accounts encoding transactions will also typically have this mixed character.

The Double-Entry Method: Multiplicative Case

We first need a way to generate a multiplicative equation and then use double-entry multiplicative accounting to make changes in it.  One easy method to generate an equation is consider a table with entry giving a number of possibilities in making a choice.  The basic law of counting is that if one has to make a choice from m "boxes" and each box contains n(i) possibilities for i = 1,…,m (where n(i) is a natural number), then the total number of possibilities is the product: n(1)n(2)…n(m).  For instance, for m = 3 with n(1) = 5, n(2) = 2, and n(3) = 7, we have the number of possible choices as 5 x 2 x 7 = 70. 

Now arrange the boxes in a rectangular array.  We then would have two ways to compute the total number of possibilities and thus we would have a multiplicative equation.  Take the product along the rows and then multiply the row-products, or take the product down the columns and then multiply the column-products.

	
	Column 1
	Column 2
	Column 3

	Row 1
	6
	9
	4

	Row 2
	2
	7
	10


Think of the  row-products as LHS accounts in the equation and the column-products as RHS accounts.  Thus the balance in Row 1 is 6 x 9 x 4 = 216 and in Row 2 is 2 x 7 x 10 = 140 for a total product of 216 x 140 = 30240.  The column products are 12, 63, and 40 so the total product is again: 12 x 63 x 40 = 30240.  Thus the beginning equation is:

Row 1

Row 2


Column 1
Column 2
Column 3

216
x
140

=
12
x
63
x
40.

Each natural number n can be identified with the fraction n/1 in a multiplicative equation.
  The analogue to the equation zero-account in additive accounting would be the equation unit-account in multiplicative accounting.  Hence we encode the LHS accounts using the debit isomorphism (d/c) ( d/c, and the RHS accounts using the credit isomorphism (c/d)  ( d/c to obtain the initial equation unit-account:

Row 1

Row 2

Column 1
Column 2
Column 3

(216/1)
 
(140/1)
 
(1/12)

(1/63)

(1/40)

where the multiplication signs between the accounts are left out.  They all multiply together to yield the unit-account (1/1), which corresponds in the additive case to computing the trial balance by adding all the ledger accounts together to yield the zero-account [0 // 0].  

Transactions might be made by simply changing the number of possibilities in a box.  Suppose that the transaction is to change the 9 in the Row 1 Column 2 box into a 5.  In other words we multiply that entry by 5/9 which means multiplying the row-product Row 1 and the column-product Column 2 by 5/9.  Since we are multiplying both sides of an equation by the same term 5/9 we will get an equation again.  But how would these changes in the equation be treated using the double-entry method?

	
	Column 1
	Column 2
	Column 3

	Row 1
	6
	9 x 5/9 = 5
	4

	Row 2
	2
	7
	10


That positive rational 5/9 encodes by the debit isomorphism to the multiplicative T-account (5/9) which is multiplied times the debit-balance Row 1 account to obtain: (216/1)(5/9) = (1080/9) = (120/1).  The 5/9 multiplier encodes by the credit isomorphism as the multiplicative T-account (9/5) which is multiplied times the credit balance Column 2 account to obtain: (1/63)(9/5) = (9/315) = (1/35).  Since the whole unit-account was multiplied by the unit (5/9)(9/5), it is still a unit and thus still expresses a multiplicative equation.  This could be written as follows:

Original equation unit-account:
(216/1) (140/1) (1/12) (1/63) (1/40)

x Transaction unit-account:

(5/9)

 
 (9/5)


= Ending equation unit-account:
(120/1) (140/1) (1/12) (1/35) (1/40)

The new balances in the ledger are:

Row 1

Row 2

Column 1
Column 2
Column 3

(120/1)
 
(140/1)
 
(1/12)

(1/35)

(1/40)

Reversing the encoding yields the new equation:

Row 1

Row 2


Column 1
Column 2
Column 3

120
x
140

=
12
x
35
x
40.

Another transaction might make off-setting changes in, say, one of the columns so that the debit and credit multipliers would be to row accounts.  Consider the following table.

	
	Column 1
	Column 2
	Column 3

	Row 1
	6
	 5
	4 x 2 = 8

	Row 2
	2
	7
	10  ( 2 = 5


In double-entry terms, this would be encoded as multiplying Row 1 with (2/1) (obtained from 2 by the debit isomorphism) and multiplying Row 2 with the inverse (1/2) (obtained from 2 with the credit isomorphism).

Original equation unit-account:
(120/1) (140/1) (1/12) (1/35) (1/40)

x Transaction unit-account:

(2/1)
 (1/2)


= Ending equation unit-account:
(240/1) (70/1) (1/12) (1/35) (1/40)

Decoding yields:

Row 1

Row 2


Column 1
Column 2
Column 3

240
x
70

=
12
x
35
x
40.

For a last example, suppose that in row 1, the column 2 entry is multiplied by 2 and the column 1 entry is divided by 2 as in the following table.

	
	Column 1
	Column 2
	Column 3

	Row 1
	6 ( 2 = 3
	 5 x 2 = 10
	8

	Row 2
	2
	7
	5


This encodes as multiplying the credit-balance account Column 2 with the multiplier (1/2) obtained from 2 by the credit isomorphism, and by multiplying the credit-balance account Column 1 by the debit isomorph (2/1) (since 2 was divided into that account).

Original equation unit-account:
(240/1) (70/1) (1/12) (1/35) (1/40)

x Transaction unit-account:



(2/1)   (1/2)


= Ending equation unit-account:
 (240/1) (70/1) (1/6) (1/70) (1/40)

The Double-Entry Method: General Case

The general setting for the double-entry method is in the Pacioli group P(M) of a commutative monoid M (a set with an operation written, say, as "+" with an identity element 0 where m + m' = m' + m) with the cancellative property that if m+n = m'+n then m = m'.  The initial equation could be stated in terms of elements of M or it could be in P(M):

Sum of LHS terms = Sum of RHS terms.

Each element in P(M) can be written in the form [d // c] for some elements d and c in the monoid M so the equation might have the form:

…+ [d // c] = [d' // c']+…

which would encode as an equation zero-account (or ledger):

…+ [d // c] + [c' // d'] + … = [0 // 0].

Then any changes in the equation which preserve its validity must be a sequence of changes of the form: for some g in P(M), add g + –g = [0 // 0] to the equation.  But the g term and its inverse –g must be distributed through the equation and grouped with some of the existing terms.  Two cases arise for g and two cases for –g:

1. Add g to a LHS term [d // c], i.e., debit to a debit-balance account;

2. Add g to a RHS term [c' // d'], i.e., debit to credit-balance account;

3. Add –g to a LHS term [d // c], i.e., credit to a debit-balance account; and

4. Add –g to a RHS term [c' // d'], i.e., credit to credit-balance account.

Since the addition of g is the debit and the addition of –g is the credit, the sum of the debits and credits is 0.  That sum is the transaction zero-account that expresses the double-entry principle.  After a number of transactions, the reverse encoding is applied to the ending equation zero-account to arrive at the ending equation. 

It might be helpful to spell out the transaction analogies between the additive and multiplicative cases in another table as special cases of the general framework.  

	
	Additive Scalar Case
	Additive Vector Case
	Multiplicative Case

	Element g in P(M)
	If s is a scalar, take:

g = [s // 0] and –g = [0 // s].
	If t is a vector, take:

g = [t+// t–] and –g = [t‑ // t+].
	If m/n is a positive rational, take: g = (m/n) and g–1 = (n/m).

	Equation as zero-account in P(M)
	…+ x = y +… so

…+[x//0]+[0//y]+… = [0//0]
	…+ x = y +… so

…+[x+//x-]+[y–//y+]+…=[0//0]
	…d/c = d'/c'… so

…(d/c) (c'/d')… = (1/1)

	1. Apply g to LHS account (debit to debit-balance account)
	Add g to LHS account: e.g., add [s//0] to [x//0].
	Add g to LHS account, e.g., add [t+// t–] to  [x+// x–].
	Multiply g times LHS account, e.g., multiply (m/n) times (d/c).

	2. Apply g to RHS account (debit to credit-balance account)
	Add g to RHS account, e.g., add [s//0] to [0//y].
	Add g to RHS account, e.g., add [t+// t–] to [y–// y+].
	Multiply g times RHS account, e.g.,  multiply (m/n) times (c'/d').

	3. Apply inverse of g to LHS account (credit to debit-balance account)
	Add –g to LHS account, e.g., add [0//s] to [x//0].
	Add –g to LHS account, e.g.,  add [t‑ // t+] to [x+// x-].
	Multiply g–1 times LHS account, e.g., multiply (n/m) times (d/c).

	4. Apply inverse of g to RHS account (credit to credit-balance account)
	Add –g to RHS account, e.g., add [0//s] to [0//y].
	Add –g to RHS account, e.g., add [t–// t+] to  [y–// y+].
	Multiplying g–1 times RHS account, e.g., multiply (n/m) times (c'/d').


Concluding Remarks

"Mathematics is the study of analogies between analogies."
  The mathematical analysis of double-entry bookkeeping starts with the analogy between the ordered pairs construction of the signed numbers and T-accounts.  That allows the concrete procedures of DEB to be reproduced abstractly using the group of differences construction, and then to be extended from ordered pairs of non-negative scalars to ordered pairs of non-negative vectors to obtain the system of n-dimensional DEB.  Then the analogy carries over to the group of fractions, so that one can also have a multiplicative system of double-entry bookkeeping.  These three cases can then be generalized using the Pacioli group completion of an commutative cancellative monoid, but concrete intpretations are only given for the additive and multiplicative cases outlined here.

This mathematical treatment of DEB serves another purpose—to help clear up the remarkable confusion in the accounting literature about the "doubleness" that is characteristic of DEB and, indeed, about the nature of double-entry bookkeeping itself.  Without reviewing all the other proposed notions of "doubleness" (e.g., the fact that each transaction must affect two or more accounts or the double classification of an entry in a table or matrix), the immediate and straightforward generalization of the ordered pairs treatment to n-dimensional vectors and to fractions—with the main structure and principles of DEB preserved—supports the thesis that this treatment captures the mathematical essence of the double-entry method.
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� See Littlewood 1960, 18; Bourbaki 1974, 20; or Warner 1990, 171 where an abstract version of the group of differences or fractions is called an "inverse-completion." 


� The double-slash notation was suggested by Pacioli.  "At the beginning of each entry, we always provide 'per', because, first, the debtor must be given, and immediately after the creditor, the one separated from the other by two little slanting parallels (virgolette), thus, //,… ." [Pacioli 1914, 43]


� For the sake of clarity, it is sometimes useful to be a little pedantic and to emphasize that the positive and negative numbers are quite symmetrical in the purely additive structure of the integers Z, reals R, or in Rn.  The distinction between positive and negative numbers comes only with additional structure such as an ordering relation or multiplication.  Thus a vector T-account [x // y] could just as well be identified with x–y or y–x (via the debit or credit isomorphisms).  There is similar isomorphism (also "taking inverses") between the multiplicative structure on  the positive rationals less than one and those greater than one.


� Another way to represent an element in the positive rationals might be as a strictly vertical ordered pair of natural numbers � EMBED Equation.3  ��� where we do not make the symmetry-breaking assumption that this is to be written horizontally as m/n (debit isomorphism) or as n/m (credit isomorphism).  Sticking to a horizontal notation, we will take the fraction without parentheses m/n as being like that vertical ordered pair which could be mapped to either the T-account (m/n) via the debit isomorphism or to (n/m) via the credit isomorphism.  This pedantry is necessary to appreciate the full symmetry of debits and credits in the double-entry method.


� This treatment is mathematical.  For a treatment using vectors of property rights, see Ellerman 1982, 1986, 1995.


� An "abuse of language" is involved in calling the non-negative vector x– the "negative part" of x.


� Multiplicative DEB could also be used with a beginning equation with a product of fractions on each side (not just fractions like n/1), but an equation of a product of natural numbers on each side will have sufficient generality to illustrate the method.


� Rota 1997, 214.  The expression comes through Stanislav Ulam from Stefan Banach.
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