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Comparison between set and quantum case

Set Case Quantum Case
Product X× Y HA ⊗HB

Given state p (x, y) ρAB = |ψ〉 〈ψ|
Marginals p (x) , p (y) ρA, ρB

Independent p (x, y) = p (x) p (y) ρAB = ρA ⊗ ρB

Entangled p (x, y) 6= p (x) p (y) ρAB 6= ρA ⊗ ρB

Bijection {xi} ←→ {yi} {|iA〉} ←→ {|iB〉}
Schmidt pi p (xi, yi) = pi |ψ〉 = ∑i

√
pi |iA〉 |iB〉

Ent. Meas. d (p (x, y) ||p (x) p (y)) d
(
ρAB||ρA ⊗ ρB)

Formula ∑i p2
i − 2 ∑i p3

i +∑i,j p2
i p2

j 1− 2 ∑i p3
i +∑i,j p2

i p2
j

Max Entang. pi = pj pi = pj



What is entanglement?: I

• The research program of providing an objective
indistinctness interpretation of QM uses, in part, the device
of looking at the relevant mathematics of partitions at the
level of sets, and then lifting the math to vector spaces
where QM lives.

• Hence the beginning of understanding entanglement from
this perspective is to understand it at the level of sets.

• Given a set X (thinking of the singletons as the set of
completely distinct or eigen-elements), a subset SX is the
set-analogue of a superposition of its elements. Thus a
block SX in a partition on X is a "state" that is indistinct
between its elements but has been distinguished from the
elements outside of it.
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What is entanglement?: II

• As more distinctions are made, the block gets refined
eventually into singletons, the fully distinct or
eigen-elements.

• To visualize this refinement of blocks, consider the
powerset ℘ (X) partially ordered by inclusion and then flip
it over (and throw away the null set) to get the block
refinement partial ordering ℘ (X)op −∅.

• Then you have the picture of the blob or ur-block X at the
bottom and then all the other blocks that can result from
making more and more distinctions until you arrive at the
maximally distinguished atoms or singletons in the
reverse-inclusion partial order.
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What is entanglement?: III

• Each block or subset of X is understood as a mini-blob or
objectively indistinct "element" which with more
distinctions could be eventually refined into one its
eigen-elements. It is indistinct between those
eigen-alternatives, but it has been distinguished from all the
other eigen-elements (outside the subset).

• Consider the reverse question of what happens if we go the
other way of grouping the fully distinct eigen-elements
together (i.e., superposing them) to get indistinct elements
or blocks? Do we get anything new? In this case, no. All the
blocks that can be obtained by forming new indistinct
elements are just subsets of X already in the order
℘ (X)op −∅.
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What is entanglement?: IV

• Suppose we start with two sets X and Y and consider the
two block-refinement orderings ℘ (X)op −∅ and
℘ (Y)op −∅. In each ordering by itself, nothing new
appears if we superpose distinct eigen-elements to get
blocks indistinct between their elements.

• Now we take the product of the two orderings[
℘ (X)op −∅

]
×
[
℘ (Y)op −∅

]
. The bottom of the ordering

is X× Y, the blob or ur-block in the combined system, and
the fully distinct maximal elements in the product ordering
are the eigen-pairs of singletons ({x} , {y}) or less
pedantically (x, y) ∈ X× Y, i.e., all the fully distinct
alternatives that can be developed out of the ur-block X× Y
by making distinctions.
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What is entanglement?: V
• Note that there is nothing new in the product

eigen-elements; they are just pairs of eigen-elements from X
and Y. The fully distinct eigen-elements of ℘ (X× Y)op −∅
are all there in

[
℘ (X)op −∅

]
×
[
℘ (Y)op −∅

]
.

• We ask: if we group together or superpose some of these
fully distinct eigen-pairs, ({x} , {y}) or simply (x, y) for
x ∈ X and y ∈ Y, do we get anything new or just the
products of blocks of elements of X and of Y?

• We can get all the products of X-blocks and Y-blocks in this
way, but we also get new indistinct blocks that are not
product blocks.

• Those new blocks are the entangled states which represent
the new ways to make indistinct elements due to the
"interaction" of X and Y.
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Example: I

• Consider the set version of two qubit space where
X = {0X, 1X} and Y = {0Y, 1Y}. The two block refinement
orders are simple:

{0
X
,1

X
} {0

Y
,1

Y
}

{0
Y
} {1

Y
}{0

X
} {1

X
}

• Trivially, each superposition of the maximally distinct
elements gives nothing new within each ordering.

• Then we take the product of the two orders to obtain:

David Ellerman (UCR) Entanglement in Sets and Vector Spaces April 2012 7 / 35



Example: II

({0
X
,1

X
},{0

Y
,1

Y
})

({0
X
},{0

Y
,1

Y
}) ({0

X
,1

X
},{0

Y
}) ({0

X
,1

X
},{1

Y
}) ({1

X
},{0

Y
,1

Y
})

({0
X
},{1

Y
})({0

X
},{0

Y
}) ({1

X
},{1

Y
})({1

X
},{0

Y
})

• A product block such as ({0X} , {0Y, 1Y}) represents the
subset {(0X, 0Y) , (0X, 1Y)} ⊆ X× Y so this gives a suborder
of the block refinement ordering for X× Y.

• But not all subsets of X× Y can be obtained as products of
blocks from X and Y.
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Example: III
• By "interacting" X and Y, new types of indistinct "states"

can be formed by grouping together or "superposing" some
of the fully distinct eigen-elements.

• For instance {(0X, 0Y) , (1X, 1Y)} and {(0X, 1Y) , (1X, 0Y)} are
new types of "entangled" indistinct states as well as
{(0X, 0Y) , (0X, 1Y) , (1X, 1Y)} and three others (see
continuation of the example below).

• This set example illustrates the basic point that by
interacting two systems, no new fully distinct states are
created but new types of indistinct states become possible
and they are the entangled states. In spite of all the talk of
entanglement as a uniquely quantum phenomenon, we see
that it arises already at the level of ordinary sets. Now to
measure it.
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Entanglement of sets: I

• Given two finite sets X and Y, a subset S ⊆ X× Y of their
Cartesian product is a product subset if there are subsets
SX ⊆ X and SY ⊆ Y such that S = SX × SY.

• A subset S ⊆ X× Y that is not a product subset might be
called an entangled subset.

• For any subset S ⊆ X× Y, a natural measure of its
entanglement can be constructed by first viewing S as the
support of the equiprobable or Laplacian joint probability
distribution on S.

• If |S| = N, then define p (x, y) = 1
N if (x, y) ∈ S and

p (x, y) = 0 otherwise.
• The marginal distributions are defined in the usual way:

• p (x) = ∑y p (x, y)
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Entanglement of sets: II
• p (y) = ∑x p (x, y).

• A joint probability distribution p (x, y) on X× Y is
independent if for all (x, y) ∈ X× Y,

p (x, y) = p (x) p (y).
Independent distribution

Theorem
A subset S ⊆ X× Y is entangled iff the equiprobable distribution on S
is not independent.

Proof: Let SX be the support or projection of S on X, i.e.,
SX = {x : ∃y ∈ Y, (x, y) ∈ S} and similarly for SY. If S is not
entangled, i.e., S = SX × SY, then p (x) = |SY|/N for x ∈ SX and
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Entanglement of sets: III

p (y) = |SX| /N for y ∈ SY where |SX| |SY| = N. Then for
(x, y) ∈ S,

p (x, y) = 1
N =

N
N2 =

|SX||SY|
N2 = p (x) p (y)

and p (x, y) = 0 = p (x) p (y) for (x, y) /∈ S so the equiprobable
distribution is independent. If S 6= SX × SY, then S $ SX × SY so
let (x, y) ∈ SX × SY − S. Then p (x) , p (y) > 0 but p (x, y) = 0 so
it is not independent. �
• Hence for sets, a measure of entanglement of a subset

S ⊆ X× Y would the measure of the logical divergence
between the equiprobable distribution p (x, y) on S and the
product of marginals distribution p (x) p (y):
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Entanglement of sets: IV

d (p (x, y) ||p (x) p (y)) =
2h (p (x, y) ||p (x) p (y))− h (p (x, y))− h (p (x) p (y)).

• d (p (x, y) ||p (x) p (y)) > 0 iff S is an entangled subset and
• d (p (x, y) ||p (x) p (y)) = 0 iff S is a product subset.
• The logical entropy of the equiprobable distribution is

h (p (x, y)) = 1−N 1
N2 = 1− 1

N where |S| = N.
• For any x ∈ SX, let sx = |{y : (x, y) ∈ S}| and similarly for

sy. Then p (x) = sx
N and p (y) = sy

N so the logical entropy of
the product distribution is

h (p (x) p (y)) = 1−∑x∈SX,y∈SY

s2
xs2

y
N4 .

David Ellerman (UCR) Entanglement in Sets and Vector Spaces April 2012 13 / 35



Entanglement of sets: V

• The cross-entropy is:

h (p (x, y) ||p (x) p (y)) = 1−∑(x,y)∈S
sxsy
N3 .

• Hence putting it together:

d (p||p (x) p (y)) = 2h (p||p (x) p (y))− h (p)− h (p (x) p (y))

= 2
[
1−∑(x,y)∈S

sxsy
N3

]
−
[
1− 1

N
]
−
[

1−∑x∈SX,y∈SY

s2
xs2

y
N4

]
d (p||p (x) p (y)) = ∑x∈SX,y∈SY

s2
xs2

y
N4 +

1
N − 2 ∑(x,y)∈S

sxsy
N3 .
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Entanglement of sets: VI
• In the relevant range, 1 ≤ sx ≤ |SX| and 1 ≤ sy ≤ |SY|, the

divergence is inversely related to the sx and sy so the
maximum entanglement (by this measure) occurs when
sx = sy = 1 which means that S is the graph of a bijection
between a subset of X and a subset of Y (which in
combinatorics is a partial matching between X and Y).

• In that maximum entanglement case, the value of the
divergence is:

MaxDiv = ∑x∈SX,y∈SY

s2
xs2

y
N4 +

1
N − 2 ∑(x,y)∈S

sxsy
N3

= |SX| |SY| 1
N4 +

1
N − 2 1

N2 =
1

N4

[
|SX| |SY|+N3 − 2N2].

Since S is the graph of a bijection between a subset of X and of
Y, we might as well throw away the rest of X and Y so that
|SX| = |SY| = N, and then we have:
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Entanglement of sets: VII

MaxDiv = 1
N4

[
|SX| |SY|+N3 − 2N2] = 1

N4

[
N3 −N2] so

MaxDiv = 1
N
[
1− 1

N
]

.

• Alternatively, instead of cutting down X and Y so that
|SX| = |SY| = N, we can increase the MaxDiv by increasing
N (since the derivative of 1

N
[
1− 1

N
]

is positive for positive
N) until N = min (|X| , |Y|). Then we could throw away the
excess in X or Y and use the above MaxDiv formula where a
bijection, that is a complete matching between X and Y, is
the maximum entanglement subset.
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Example continued: I

• Consider again the set version of two qubit space where
X = {0X, 1X} and Y = {0Y, 1Y}.

• The product space X× Y has 15 nonempty subsets. Each
factor X and Y has 3 nonempty subsets so 3× 3 = 9 of the
15 subsets are product subsets leaving 6 entangled subsets.

• The 6 entangled subsets and their divergences are:

{(0, 0) , (1, 1)} {(0, 1) , (1, 0)}
1
4

1
4

{(0, 0) , (0, 1), (1, 0)} {(0, 0) , (0, 1), (1, 1)}
4
81

4
81

{(0, 1), (1, 0) , (1, 1)} {(0, 0), (1, 0) , (1, 1)}
4
81

4
81
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Example continued: II

• The first two "Bell subsets" are the two graphs of bijections
X←→ Y and have the maximum entanglement which can
be calculated by the formula for the maximum divergence
where N = 2, MaxDiv = 1

2

[
1− 1

2

]
= 1

4 .
• The entanglement of say {(0, 0) , (0, 1), (1, 0)} is calculated

using N = 3, s0X = 2 = s0Y and s1X = 1 = s1Y.
• All the 9 product states have zero entanglement. For

instance, for S = {(0, 0) , (0, 1)}, we have N = 2, s0X = 2,
s1X = 0, and s0Y = s1Y = 1 so that:

d (p||p (x) p (y)) = ∑x∈SX,y∈SY

s2
xs2

y
N4 +

1
N − 2 ∑(x,y)∈S

sxsy
N3

=
[ 4

16 +
4

16

]
+ 1

2 − 2
[2

8 +
2
8

]
= 1

2 +
1
2 − 1 = 0.
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Digression on probabilities as random
variables: I

• Any finite probability distribution p = {p1, ..., pn} can be
viewed as a random variable taking the value pi with the
probability pi.

• The expectation of p is Ep (p) = ∑i p2
i so the logical entropy

h (p) = 1−∑i p2
i is the complement of the expectation of p.

• Given another distribution q = {q1, ..., qn} over the same
index set, the cross-expectation is:

E (p||q) = Ep (q) = Eq (p) = ∑i piqi

• The logical cross-entropy h (p||q) = 1−∑i piqi is the
complement of the cross-expectation.

David Ellerman (UCR) Entanglement in Sets and Vector Spaces April 2012 19 / 35



Digression on probabilities as random
variables: II

• The logical divergence is:

d (p||q) = ∑i (pi − qi)
2 = 2h (p||q)− h (p)− h (q)

= 2 [1− E (p||q)]−
[
1− Ep (p)

]
−
[
1− Eq (q)

]
= Ep (p) + Eq (q)− 2E (p||q) = Ep (p) + Eq (q)− Ep (q)− Eq (p)

d (p||q) =
(
Ep − Eq

)
(p− q)

Divergence in terms of linear expectation operators

• The logical information inequality that d (p||q) ≥ 0 can then
be written as:

Ep (p) + Eq (q) ≥ Ep (q) + Eq (p)
Sum of self-expectations ≥ sum of cross-expectations.
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Probabilities on bijections: I

• In the set case, a subset S ⊆ X× Y that is the graph of a
bijection is the set analogue of the Schmidt decomposition
of a pure state on a tensor product which is always
available when working over Hilbert spaces. The different
pairs of orthogonal basis states in a Schmidt decomposition
|ψ〉 = ∑i

√
pi |iA〉 ⊗ |iB〉may have different Schmidt

coefficients
√

pi. Hence to develop the set analogue, we
assume S is a bijection graph but allow an arbitrary
probability distribution on S.

• A bijective S has the form {(xi, yi) : i = 0, ..., N− 1} so we
assume a probability distribution with p (xi, yi) = pi and 0
otherwise.
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Probabilities on bijections: II

• Since the set S is a bijection, the marginals are
p (xi) = pi = p (yi), so that h (p (x)) = h (p (y)) = 1−∑i p2

i .
This is the set analogue of the reduced density matrices
having the same eigenvalues pi in the quantum case.

• The logical entropy of p (x, y) is: h (p (x, y)) = 1−∑i p2
i .

• The logical entropy of the product distribution is:
h (p (x) p (y)) = 1−∑i,j p2

i p2
j = 1−

(
∑i p2

i
)2.

• The cross-entropy is: h (p (x, y) ||p (x) p (y)) = 1−∑i p3
i .

• Hence the measure of entanglement in this case is:
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Probabilities on bijections: III
d (p (x, y) ||p (x) p (y)) =

2h (p (x, y) ||p (x) p (y))− h (p (x, y))− h (p (x) p (y))
= 2

[
1−∑i p3

i
]
−
[
1−∑i p2

i
]
−
[
1−

(
∑i p2

i
)2
]

so

d (p (x, y) ||p (x) p (y)) = ∑i p2
i − 2 ∑i p3

i +
(
∑i p2

i
)2 .

• In terms of the expectations,
• Ep (p) = ∑i p2

i ,
• Ep(x)p(y) (p (x) p (y)) = ∑i,j p2

i p2
j =

(
∑i p2

i
)2,

• E (p (x, y) ||p (x) p (y)) = ∑i p3
i .

• The variance of the random variable p is:

Var (p) = Ep
(
p2)− Ep (p)

2 = ∑i p3
i −

(
∑i p2

i
)2.
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Probabilities on bijections: IV
• Hence the divergence formula in this special case is:

d (p (x, y) ||p (x) p (y)) = Ep [p (x, y)− p (x) p (y)]−Var (p).

• Here again, the maximum divergence & entanglement is
the equiprobable case, pi =

1
N , where Ep (p) = 1

N ,
Ep (p (x) p (y)) = 1

N2 , and Var (p) = 0 so the formula gives
the previous result:

1
N −

1
N2 =

1
N
[
1− 1

N
]
.

• Note how the variance of p takes away from the divergence
in this bijective case, and the variance is 0 for both the
extreme cases: pi =

1
N and p1 = 1. The first case (pi =

1
N ) is

the maximum entanglement and the second case (p1 = 1) is
zero entanglement (product state).
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Quantum case: I

• Given two systems A, B represented in Hilbert spaces HA

and HB, let ρAB = |ψ〉 〈ψ| be a pure state in the tensor
product HA ⊗HB.

• If {|ai〉} and
{∣∣bj

〉}
are orthonormal bases for the

component spaces, let [α] be the matrix of coefficients for ψ,
i.e.,

[α] =
[
αij
]

where |ψ〉 = ∑i,j αij |ai〉 ⊗
∣∣bj
〉
.

• Then [α] [α]† = ρA is the reduced density matrix on HA and
[α]† [α] = ρB is the reduced density matrix on HB, where []†

is the Hermitian transpose.
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Quantum case: II
• The Schmidt decomposition of ψ is |ψ〉 = ∑i

√
pi |iA〉 ⊗ |iB〉

where {|iA〉} and {|iB〉} are orthonormal bases for the
component spaces.

• Where pi 6= 0, the Schmidt decomposition establishes a
bijection between a subset of the basis {|iA〉} and a subset
of the basis {|iB〉} which is the "lift" of such a bijection in
the set case.

• The reduced density matrices can then be expressed as:
ρA = ∑i pi |iA〉 〈iA| and ρB = ∑i pi |iB〉 〈iB| so the pi are the
non-negative eigenvalues for both reduced density
matrices.

• Since the trace is invariant under similarity transformations
and since each density matrix could be diagonalized to its
diagonal matrix of eigenvalues, the traces of the squares are:
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Quantum case: III

tr
[(

ρA)2
]
= tr

[(
ρB)2

]
= ∑i p2

i

so that h
(
ρA) = h

(
ρB) = 1−∑i p2

i .

• Since ρAB is assumed to be a pure state, tr
[(

ρAB)2
]
= 1 so

h
(
ρAB) = 1− tr

[(
ρAB)2

]
= 0.

• The logical entropy of the product state ρA ⊗ ρB is:

h
(
ρA ⊗ ρB) = 1− tr

[(
ρA)2

]
tr
[(

ρB)2
]
= 1−

(
∑i p2

i
)2.

David Ellerman (UCR) Entanglement in Sets and Vector Spaces April 2012 27 / 35



Quantum case: IV

• The Schmidt number is the number of non-zero pi, and it is
1 with p1 = 1 iff ρAB is a product state, i.e., ρAB = ρA ⊗ ρB.
Then ∑i p2

i = 1 and h
(
ρA) = h

(
ρB) = 0 so that

d
(
ρAB||ρA ⊗ ρB) = 0 as well.

• In the Schmidt basis for the case where both HA and HB are
three dimensional, then:

|ψ〉 = √p0 |0A〉 ⊗ |0B〉+
√

p1 |1A〉 ⊗ |1B〉+
√

p2 |2A〉 ⊗ |2B〉.

• Then the matrix for ρAB in the {|iA〉 ⊗ |jB〉} basis is:
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Quantum case: V

ρAB =



p0 0 0 0
√

p0p1 0 0 0
√

p0p2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0√
p1p0 0 0 0 p1 0 0 0

√
p1p2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0√
p2p0 0 0 0

√
p2p1 0 0 0 p2


.

• The matrix for ρA ⊗ ρB is diagonal:
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Quantum case: VI

ρA ⊗ ρB =



p2
0 0 0 0 0 0 0 0 0

0 p0p1 0 0 0 0 0 0 0
0 0 p0p2 0 0 0 0 0 0
0 0 0 p1p0 0 0 0 0 0
0 0 0 0 p2

1 0 0 0 0
0 0 0 0 0 p1p2 0 0 0
0 0 0 0 0 0 p2p0 0 0
0 0 0 0 0 0 0 p2p1 0
0 0 0 0 0 0 0 0 p2

2


.

• The cross-entropy h
(
ρAB||ρA ⊗ ρB) = 1− tr

[
ρAB (ρA ⊗ ρB)]

will in general just pick out the cubic terms:

h
(
ρAB||ρA ⊗ ρB) = 1−∑i p3

i .
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Quantum case: VII

• The suggested measure of entanglement is the logical
divergence d

(
ρAB||ρA ⊗ ρB) which can be computed as:

d
(
ρAB||ρA ⊗ ρB) = 2h

(
ρAB||ρA ⊗ ρB)− h

(
ρAB)− h

(
ρA ⊗ ρB)

= 2
[
1− tr

[
ρAB (ρA ⊗ ρB)]]− [1− tr

[(
ρAB)2

]]
−[

1− tr
[(

ρA ⊗ ρB)2
]]

= tr
[(

ρAB)2
]
− 2 tr

[
ρAB (ρA ⊗ ρB)]+ tr

[(
ρA ⊗ ρB)2

]
which is the lift of the set version:

d (p (x, y) ||p (x) p (y)) = ∑i p2
i − 2 ∑i p3

i +∑i,j p2
i p2

j .
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Quantum case: VIII
• Since we have assumed that ρAB is a pure state (in order to

use the Schmidt decomposition), tr
[(

ρAB)2
]
= 1 so the

final formula for the entanglement measure in terms of the
Schmidt coefficients is:

d
(
ρAB||ρA ⊗ ρB) = 1− 2 ∑i p3

i +
(
∑i p2

i
)2 .

Entanglement measure for pure ρAB

in terms of Schmidt coefficients

• Here again, it can be shown that the entanglement measure
is a maximum when the non-zero Schmidt coefficients are
equal so if there are n non-zero pi’s, then p1 = ... = pn =

1
n .

Such a case is often called "maximally entangled" so the
entanglement measure agrees.
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Quantum case: IX

• When all the Schmidt coefficients are equal, the value of the
maximum divergence is:

d
(
ρAB||ρA ⊗ ρB) = 1− 2 ∑i p3

i +
(
∑i p2

i
)2

= 1− 2 n
n3 +

(
n
n2

)2
= 1− 2n2

n4 +
n2

n4 = 1− n2

n4 = 1− 1
n2

which differs from the set formula in the first term which is
tr
[(

ρAB)2
]
= 1 instead of ∑i p2

i since there is no set analogue of
a non-trivial pure state. In the set case, a "pure state" is the
trivial case p1 = 1 and then indeed ∑i p2

i = 1.

• The Schmidt coefficients (squared) give a probability
distribution p = {p1, ..., pn} so we may restate the
divergence formula using the expectations and variance:
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Quantum case: X

d
(
ρAB||ρA ⊗ ρB) = 1−∑i p3

i −Var (p) =
h
(
ρAB||ρA ⊗ ρB)−Var (p)

where the variance in the Schmidt coefficients is 0 in both the
extreme cases of maximum entanglement and zero
entanglement.

• For all the Bell basis vectors in two qubit space, p1 = p2 =
1
2

and their maximal measure of entanglement is
1−

(1
2

)2
= 3

4 .
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Comparison between set and quantum case

Set Case Quantum Case
Product X× Y HA ⊗HB

Given state p (x, y) ρAB = |ψ〉 〈ψ|
Marginals p (x) , p (y) ρA, ρB

Independent p (x, y) = p (x) p (y) ρAB = ρA ⊗ ρB

Entangled p (x, y) 6= p (x) p (y) ρAB 6= ρA ⊗ ρB

Bijection {xi} ←→ {yi} {|iA〉} ←→ {|iB〉}
Schmidt pi p (xi, yi) = pi |ψ〉 = ∑i

√
pi |iA〉 |iB〉

Ent. Meas. d (p (x, y) ||p (x) p (y)) d
(
ρAB||ρA ⊗ ρB)

Formula ∑i p2
i − 2 ∑i p3

i +∑i,j p2
i p2

j 1− 2 ∑i p3
i +∑i,j p2

i p2
j

Max Entang. pi = pj pi = pj
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De-lifting table to be explained

Quantum case Set case

ρ = ∑k qk |ψk〉 〈ψk| (orth.de.) pπ=∑k pBk |
√pi|Bk

〉〈√pi|Bk
|

Partition of eigenspaces {Ek} Partition of blocks π = {Bk}
Orthonormal basis {|i〉} Set of points U = {i}

{pi} pdf associated with {|i〉} Pdf {pi} for i ∈ U
{qk} pdf associated with {Ek} {pB} pdf associated with {Bk}

Pure states |ψk〉 〈ψk| Pure states |√pi|Bk
〉〈√pi|Bk

|
1-dimensional eigenspaces Ek Discrete partition π = 1

Log. entropy h (ρ) = 1− tr
[
ρ2] Log. entropy h (pπ) = 1− tr

[
p2

π

]∣∣∣ρij

∣∣∣2 = indit probability (pπ)
2
ij = indit probability

h (ρ) = Σ dit probabilities h (pπ) = Σ dit probabilities
h (ρ̂)− h (ρ) = Σ new dit probs. h (pπ̂)− h (pπ) = Σ new dit probs.

T = tr [Tρ] T = tr [Tpπ]



Lifting and de-lifting as an engine of
understanding: I

• We have seen how lifting a set concept to a vector space
concept can be a way to "understand" the vector space
concept.

• For instance, there is the "mystery" as to why numerical
attributes like momentum in classical physics become linear
operators in QM.

• For sets, a numerical attribute is a function f : U→ R from
the set into some field such as R.

• We can express f as the sum of its values r times the
characteristic functions for the subsets f−1 (r) ⊆ U where f
takes that value r:
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Lifting and de-lifting as an engine of
understanding: II

f = ∑r rχf−1(r).
"Spectral decomposition" of numerical attribute

• Then we do the lift:

• Values r lift to eigenvalues λ;
• Subset where f takes a value r is f−1 (r) lifts to eigenspace

Wλ for the eigenvalue λ;
• Characteristic function χf−1(r) for f−1 (r) lifts to projection

operator Pλ to eigenspace Wλ.
• Check that characteristic functions idempotently multiply,

i.e., χ2
S (u) = χS (u) χS (u) = χS (u), just as projection

operators idempotently compose, i.e., P2
W = PW · PW = PW.X
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Lifting and de-lifting as an engine of
understanding: III

• "Spectral decomposition" of (total) numerical attribute
f = ∑r rχf−1(r) lifts to spectral decomposition L = ∑λ λPλ of
(diagonalizable) linear operator L.

• In this manner, we understand why a quantum observable,
that corresponds to a classical numerical attribute, is a
linear operator where the eigenvalues are the values of the
quantum attribute (and since the values need to be real, the
operator is Hermitian).

• Thus, by the lifting program, we essentially derive that a
real-valued quantum attribute is given by a Hermitian
linear operator on the state space.
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De-lifting density matrices: I

• A general formulation of QM works not just with state
vectors but with the notion of density operators, which
become density matrices when represented in a basis.

• Density matrices can be better understood by de-lifting that
vector-space concept to obtain the corresponding
set-concept.

• For any density operator ρ, we first represent it using its
orthogonal decomposition: ρ = ∑k qk |ψk〉 〈ψk| where the pure
state density operators (i.e., projection operators) |ψk〉 〈ψk|
have orthogonal support since they project to the
orthogonal eigenspaces Ek of ρ (where qk are the
non-negative eigenvalues that sum to 1).
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De-lifting density matrices: II

• We can choose an orthonormal basis for each eigenspace Ek.
The union of these disjoint eigenspace bases form an
orthonormal basis {|i〉} (for i = 0, 1, ..., n− 1) for the whole
space (since the eigenspaces span the space).

• When the projection operator |ψk〉 〈ψk| to the eigenspace Ek
is represented in the chosen basis for that eigenspace, then
the diagonal entries in the density matrix for |ψk〉 〈ψk| are a
probability distribution with a probability associated with
each basis vector for Ek.

• When those probabilities associated with the bases for the
Ek are weighted by the probabilities qk, then we have a
probability distribution {pi} associated with the basis {|i〉}
for the whole space.

David Ellerman (UCR) De-lifting Density Matrices May 2012 7 / 36



De-lifting density matrices: III

• Now we de-lift to obtain the set version of a density
operator ρ = ∑k qk |ψk〉 〈ψk|:
• The orthonormal basis {|i〉}i=0,...,n−1 for the space de-lifts to a

set U = {0, 1, ..., n− 1} of clear and distinct points.
• The vector space partition of the eigenspaces Ek is generated

by the set-partition of {|i〉} whose blocks generate the
eigenspaces Ek, so it de-lifts to a set-partition π = {Bk} of U.

• The probabilities {pi} associated with the basis set {|i〉}
de-lifts to a probability distribution {pi} over the points of
U = {0, 1, ..., n− 1}.

• For expository purposes, the simplest case to indicate the
general pattern is U = {0, 1, 2}.
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De-lifting density matrices: IV

• If π = 0 = {U}, the indiscrete partition on U, then the
density matrix representation of p0 is the n× n matrix with the
ij-entry √pipj. If we take

∣∣√p
〉

as the column vector of the
square roots

√
pi and

〈√
p
∣∣as its transpose, then the density

matrix is p0 =
∣∣√p

〉 〈√
p
∣∣. In the case of n = 3 , this is:

p0 =
∣∣√p

〉 〈√
p
∣∣ =

√p0√
p1√
p2

 [√p0
√

p1
√

p2
]

=

 p0
√

p0p1
√

p0p2√
p0p1 p1

√
p1p2√

p0p2
√

p1p2 p2

.
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De-lifting density matrices: V

• The density matrix representation of p0 is a symmetric,
positive semi-definite matrix of trace 1. Since there is only
one block in the partition 0, p0 is a pure state density matrix,
i.e., it is a projection matrix.

• As in the quantum case for a pure state ρ = 1 |ψ〉 〈ψ|, the
trace of this "pure state" matrix squared is 1:

tr
[
p2

0
]
= p2

0 + p0p1 + p0p2 + p2
1 + p0p1 + p1p2 + p2

2 + p0p2 + p1p2
= p0 (p0 + p1 + p2) + p1 (p0 + p1 + p2) + p2 (p0 + p1 + p2) = 1.
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Interpreting density matrix entries: I

• Let us define an amplitude for a probabilistic event as a
quantity whose absolute-value squared or "absolute
square" is the probability of the event.

• An outcome i in the sample space U has probability pi. If
we take two independent drawings from the sample space
(w/replacement), then the probability of the pair (i, j) of
outcomes is pipj.

• Thus √pipj is an amplitude for the pair-outcome (i, j) and pi
is an amplitude for the pair-outcome (i, i). Hence we have:

p0 =

 p0
√

p0p1
√

p0p2√
p0p1 p1

√
p1p2√

p0p2
√

p1p2 p2


= matrix of pair-outcome amplitudes.
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Interpreting density matrix entries: II

• For comparison purposes, let’s recall the quantum case of a
pure state density matrix.

• Consider any pure state ρ = |ψ〉 〈ψ|. The general
three-dimensional case is illustrative:

|ψ〉 = α0 |0〉+ α1 |1〉+ α2 |2〉
ρ = |ψ〉 〈ψ| = [α0 |0〉+ α1 |1〉+ α2 |2〉]

[
α∗0 〈0|+ α∗1 〈1|+ α∗2 〈2|

]
=

α0α∗0 α0α∗1 α0α∗2
α1α∗0 α1α∗1 α1α∗2
α2α∗0 α2α∗1 α2α∗2

.
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Interpreting density matrix entries: III

• A diagonal term ρi = αiα
∗
i is the probability that a

{|i〉}-basis measurement of the state |ψ〉 will result in the
eigenstate |i〉. Hence ρi squared is the probability for the
pair-outcome of getting (|i〉 , |i〉) in two independent
measurements.

• The probability ρiρj = αiα
∗
i αjα

∗
j is the probability that two

independent measurements would result in the pair of
eigenstates (|i〉 , |j〉).

• The off-diagonal coherence term ρij of ρ is the amplitude
αiα
∗
j = 〈i|ψ〉 〈ψ|j〉 whose corresponding probability is:

∣∣∣ρij

∣∣∣2 = ρijρji = αiα
∗
j αjα

∗
i = αiα

∗
i αjα

∗
j = ρiρj

Probability of two measurements giving pair (|i〉 , |j〉).
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Interpreting density matrix entries: IV

• Hence the pure state density matrix ρ is the matrix of
amplitudes ρij whose absolute squares are the probabilities
for the pair-outcomes (|i〉 , |j〉) in two independent
measurements.
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Density matrix for a set-partition with
probabilities: I

• The meaning of a "pure state" is clarified by the more
general density matrix representation of a set-partition
π = {B} on U with point probabilities pi for i ∈ U.

• In this case of a set-partition π = {B} on U, with
probabilities assigned to the elements of U (e.g., the
Laplacian assumption of equal probabilities), then we can
sum the probabilities of the elements in a block B to arrive
at a block-probability pB = ∑i∈B pi. The set of block
probabilities {pB}B∈π is also a probability distribution (the
de-lift of the {qk} distribution of probabilities associated
with the eigenspace "blocks" Ek).
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Density matrix for a set-partition with
probabilities: II

• For each block B, there is the conditional probability
distribution that can be viewed as a "pure state" density
matrix where the probabilities of the points are:

pi|B = Pr (i|B) =
{ pi

pB
if i ∈ B

0 if i /∈ B
.

• With a reordering of points, this "pure state" density matrix∣∣∣√pi|B
〉 〈√pi|B

∣∣∣ has a matrix-block corresponding to the
partition block (which is the de-lift of the density matrix for
the pure state projection operator |ψk〉 〈ψk| for the "block" Ek
in the vector space partition of eigenspaces);
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Density matrix for a set-partition with
probabilities: III

∣∣∣√pi|B
〉 〈√pi|B

∣∣∣ =


0 0 · · · 0 0
0 pi

pB
· · ·

√pipj
pB

0
...

... . . . ...
...

0
√pipj

pB
· · · pj

pB
0

0 0 · · · 0 0

.

• Then the natural density matrix representation pπ of the
partition π with the given point probabilities pi and the
block probabilities {pB} is the mixed state density matrix:
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Density matrix for a set-partition with
probabilities: IV

pπ = ∑B∈π pB

∣∣∣√pi|B
〉 〈√pi|B

∣∣∣
Probability sum of pure state density matrices

(with disjoint supports)
(de-lift of ρ = ∑k qk |ψk〉 〈ψk|)

• This is not an arbitrary probabilistic sum of pure state
density matrices since the supports (the sets of points where
the conditional distributions {pB,i}i∈U are non-zero) are
disjoint (which is the de-lift of dealing with the orthogonal
representation of a quantum mixed state density operator).
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Density matrix for a set-partition with
probabilities: V

• Since the density matrix
∣∣∣√pi|B

〉 〈√pi|B

∣∣∣ is multiplied by
the probability pB, it has the effect of canceling the
denominator in the non-zero entries

√pipj
pB

so that the whole
mixed state density matrix pπ is a block-diagonal matrix.

• In the case of n = 3 and π = {{0} , {1, 2}} with point
probabilities {pi}, the mixed state density matrix pπ is:

pπ = p0

1 0 0
0 0 0
0 0 0

+ (p1 + p2)

0 0 0
0 p1

p1+p2

√
p1p2

p1+p2

0
√

p1p2
p1+p2

p2
p1+p2


=

p0 0 0
0 p1

√
p1p2

0
√

p1p2 p2

.
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Density matrix for a set-partition with
probabilities: VI

• The blocks in the block-diagonal matrix pπ correspond to
the blocks in the partition π (assuming a reordering of the
indices so the indices in the same block are consecutive).

• Given a probability distribution {pB}B∈π over the blocks in
a partition, the logical entropy of the probability
distribution is h

(
{pB}B∈π

)
= 1−∑B∈π p2

B.
• In the quantum case, the logical entropy of a mixed state

density matrix ρ is h (ρ) = 1− tr
[
ρ2].

• Hence the de-lifted definition of the logical entropy of the
set-version of the density matrix would be:
h (pπ) = 1− tr

[
p2

π

]
.

David Ellerman (UCR) De-lifting Density Matrices May 2012 20 / 36



Density matrix for a set-partition with
probabilities: VII

• The check that the de-lifting of the mixed state density
matrix is correct is:

h
(
{pB}B∈π

)
= 1−∑B∈π p2

B
?
= 1− tr

[
p2

π

]
= h (pπ).

• This is true in general but we can check it for the case at
hand.

h
(
{pB}B∈π

)
= 1−∑B∈π p2

B = 1− p2
0 − (p1 + p2)

2.

• The density matrix pπ squared is:
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Density matrix for a set-partition with
probabilities: VIII

p2
π =

p2
0 0 0

0 p2
1 + p2p1 (p1 + p2)

√
p1p2

0 (p1 + p2)
√

p1p2 p2
2 + p1p2


and

h (pπ) = 1− tr
[
p2

π

]
= 1−

[
p2

0 + p2
1 + p2p1 + p2

2 + p1p2
]

= 1− p2
0 − p1 (p1 + p2)− p2 (p1 + p2)

= 1− p2
0 − (p1 + p2)

2 = h
(
{pB}B∈π

)
.X

• Just as p0 is a pure state density matrix associated with the
blob 0, the other pure state density matrices such as:
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Density matrix for a set-partition with
probabilities: IX

∣∣∣√pi|{1,2}
〉 〈√pi|{1,2}

∣∣∣ =
0 0 0

0 p1
p1+p2

√
p1p2

p1+p2

0
√

p1p2
p1+p2

p2
p1+p2


represent mini-blobs or partition blocks where the non-zero
support is a proper subset of U, e.g., in this case B = {1, 2}.
• The probability distribution is the conditional distribution

pi|{1,2} = Pr (i| {1, 2}) of {pi} conditioned on the event
{1, 2} which thus acts like a mini-blob.
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Density matrix for a set-partition with
probabilities: X

• This completes the density matrix treatment of set
partitions π of U with a probability distribution {pi}i∈U
over the points of U which are the de-lifts of any density
matrix ρ = ∑k qk |ψk〉 〈ψk| represented in its orthogonal
decomposition.
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Special case of discrete partition: I

• Consider any general finite probability distribution {pi}i∈U.
• The point probabilities pi are also the block probabilities for

the discrete partition {{i}}i∈U on U which is usually
denoted 1.

• In the case of n = 3, we have (since pi/pB = pi/pi = 1 if
B = {i}):

p1 = ∑{i}∈1 pi

∣∣∣√pi|{i}
〉 〈√pi|{i}

∣∣∣
= p0

1 0 0
0 0 0
0 0 0

+ p1

0 0 0
0 1 0
0 0 0

+ p2

0 0 0
0 0 0
0 0 1


=

p0 0 0
0 p1 0
0 0 p2

.
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Special case of discrete partition: II

• Squaring the matrix p1 just squares the diagonal terms so
that:

h (p1) = 1− tr
[
p2

1
]
= 1−∑i∈U p2

i = h ({pi}).
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Interpreting the density matrix entries: I

• We previously noted that a density matrix entry √pipj
could be interpreted as the "amplitude" whose absolute
square is the probability for the pair-outcome (i, j) in two
independent draws from U according to the distribution
{pi}i∈U.

• Now we have the more general case of a block-diagonal
density matrix such as:

pπ =

p0 0 0
0 p1

√
p1p2

0
√

p1p2 p2

.
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Interpreting the density matrix entries: II

• Since the non-zero blocks correspond to the blocks B ∈ π,
the non-zero entries √pipj correspond to pairs (i, j) where
i, j ∈ B for some B ∈ π, i.e., (i, j) is an indistinction or indit
of the partition π.

• The zero terms in the block-diagonal matrix pπ are for the
index pairs (i, j) where i and j are in different blocks of π,
i.e., (i, j) is a distinction or dit of π.

• Hence for all the entries (pπ)i,j, the absolute square is the
probability that the pair (i, j) is drawn as an indistinction of
π [where if (i, j) is a distinction of π, then the probability of
it being an indistinction is 0].

• Thus we have the general interpretation of the pπ entries:
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Interpreting the density matrix entries: III
(pπ)i,j = indistinction amplitude and

(pπ)
2
i,j = indistinction probability.

• It is a general fact that:

tr
[
p2

π

]
= ∑i,j (pπ)

2
i,j

= sum of all indistinction probabilities.

• The logical entropy is h (pπ) = 1− tr
[
p2

π

]
and

1 = (∑i pi)
2 = ∑i,j pipj, so we have:

h (pπ) = 1− tr
[
p2

π

]
= ∑i,j

[
pipj − (pπ)

2
i,j

]
.
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Interpreting the density matrix entries: IV
• Now pipj is the probability of drawing the pair (i, j) in two

independent draws from U according to the probabilities
{pi}i∈U regardless of whether (i, j) is a distinction or
indistinction of π, and (pπ)

2
i,j is the probability of drawing

the pair (i, j) as an indistinction of π. Hence pipj − (pπ)
2
i,j is

the probability of drawing the pair as a distinction (i, j) of π.
• Thus the interpretation of the (pπ)

2
i,j terms as indistinction

probabilities gives the interpretation of the logical entropy:

h (pπ) = ∑i,j

[
pipj − (pπ)

2
i,j

]
= sum of all distinction probabilities.

• Hence the logical entropy of h (pπ) is the probability that
the two draws from U will give a distinction of π.
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Change in entropy under refinement: I

• Suppose that π � π̂, i.e., π̂ refines π as partitions of U (with
the same point probabilities {pi}i∈U). For instance, π̂ might
be the discrete partition (like the result of a nondegenerate
measurement).

• h (pπ) = ∑i,j

[
pipj − (pπ)

2
i,j

]
(before refinement)

• h (pπ̂) = ∑i,j

[
pipj − (pπ̂)

2
i,j

]
(after refinement).

• When a partition π is refined to obtain a partition π̂, certain
pairs (i, j) which were indits of π become dits in π̂. For
such pairs (i, j), (pπ)

2
i,j = pipj and (pπ̂)

2
i,j = 0 and those are

the only differences between the entropy formulas.
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Change in entropy under refinement: II
• Hence the increase in entropy: h (pπ̂)− h (pπ) is just the

sum of the pipj terms, the pair-outcome probabilities, for the
pairs that switch from being indits to being dits:

h (pπ̂)− h (pπ) = ∑
{

pipj| (i, j) ∈ indit (π) ∩ dit (π̂)
}

.

• Borrowing the language of coherence and decoherence
from the quantum case, when i and j are in the same block
of π, then (pπ)

2
i,j = pipj and the density matrix entry√pipj is

a coherence term since i and j cohere by being in the same
block of π.

• But when the partition π is refined to get π̂, if a π-coherent i
and j are then in different blocks, then they have decohered
and have been distinguished by π̂.
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Change in entropy under refinement: III

• The difference in the logical entropy:

h (pπ̂)− h (pπ) = ∑ pair-probabilities pipj
for the decohered pairs (i, j).

• Incidentally, it might be noted how the interpretation of the
density matrix entries is directly associated with the logical
entropy. Matrix entries are about pairs (i, j) and so is the
interpretation of logical entropy.
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Averaging: I

• For a quantum observable represented by the Hermitian
operator T, then the average value of T in the state
ρ =∑k qk |ψk〉 〈ψk| is:

tr [Tρ] = ∑k qk tr [T |ψk〉 〈ψk|]
= ∑k qk 〈ψk|T|ψk〉 = T

• The de-lift of a Hermitian operator T is a real-valued
numerical attribute T : U→ R which, expressed as a
matrix, is the diagonal matrix of its values T (i) on the
diagonal.

• The de-lift of ρ is: pπ=∑k pBk |
√pi|Bk

〉〈√pi|Bk
|.
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Averaging: II

• A diagonal matrix D times any matrix M has diagonal
entries that are just the products dimi of the diagonal entries
in the two matrices.

• Hence we have:

tr [Tpπ] = ∑k pBk tr
[
T|√pi|Bk

〉〈√pi|Bk
|
]

= ∑k pBk ∑i T (i) pi/pBk = ∑i T (i) pi = T.
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De-lifting table explained

Quantum case Set case

ρ =∑k qk |ψk〉 〈ψk| (orth.de.) pπ=∑k pBk |
√pi|Bk

〉〈√pi|Bk
|

Partition of eigenspaces {Ek} Partition of blocks π = {Bk}
Orthonormal basis {|i〉} Set of points U = {i}

{pi} pdf associated with {|i〉} Pdf {pi} for i ∈ U
{qk} pdf associated with {Ek} {pB} pdf associated with {Bk}

Pure states |ψk〉 〈ψk| Pure states |√pi|Bk
〉〈√pi|Bk

|
1-dimensional eigenspaces Ek Discrete partition π = 1

Log. entropy h (ρ) = 1− tr
[
ρ2] Log. entropy h (pπ) = 1− tr

[
p2

π

]∣∣∣ρij

∣∣∣2 = indit probability (pπ)
2
ij = indit probability

h (ρ) = Σ dit probabilities h (pπ) = Σ dit probabilities
h (ρ̂)− h (ρ) = Σ new dit probs. h (pπ̂)− h (pπ) = Σ new dit probs.

T = tr [Tρ] T = tr [Tpπ]
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Lifting Direct to Tensor Products
• One yoga of lifting says: "Apply the set-concept to basis

sets to generate the vector-space concept."
• Given finite sets X and Y, the direct product X× Y is the set

of all ordered pairs (x, y). Given a basis {|i〉} for the vector
space HA and a basis {|j〉} for HB (both finite dimensional),
the direct product of the basis sets gives {|i〉 ⊗ |j〉} which is
a basis for the tensor product (NB: not the direct product) of
vector spaces HA ⊗HB, so tensor products of vector spaces
are the lift of direct products of sets.

• Since we can de-lift density matrices, we can de-lift the
density matrix treatment of states ρAB on HA ⊗HB to sets.

• One goal is to make sense out of the problem that the
ignorance interpretation of density matrices does not apply
to the reduced density matrices ρA and ρB for a pure
entangled state ρAB on HA ⊗HB.



Density matrices for joint distributions: I

• Given finite sets X = {0, 1, ..., m− 1} and
Y = {0, 1, ..., n− 1} and a joint probability distribution
p (x, y) = pxy on the direct product X× Y. Taking the
indiscrete partition 0 as the partition on X× Y, then
mn×mn density matrix is:

p0 =


√

p00√
p01
...√
p11

 [√p00
√

p01 · · ·
√

p11
]

=


p00

√
p00p01 · · · √p00pm−1,n−1√

p00p01 p01 · · · √p01pm−1,n−1
...

... . . . ...√
p00pm−1,n−1

√
p01pm−1,n−1 · · · pm−1,n−1

.
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Density matrices for joint distributions: II
• For a matrix derivation of the marginal distributions

px = ∑y pxy and py = ∑x pxy, arrange the coefficients √pij in

an m× n matrix [α] =
[√pij

]
, and then [α] [α]t is the

symmetric, positive, and unit trace m×m density matrix for
the marginal distribution px, e.g., for m, n = 3,

[α] [α]t =√p00
√

p01
√

p0,2√
p10

√
p11

√
p1,2√

p20
√

p21
√

p22

√p00
√

p10
√

p20√
p01

√
p11

√
p21√

p02
√

p12
√

p22


=

 ∑y p0y ∑y
√p0yp1y ∑y

√p0yp2y

∑y
√p1yp0y ∑y p1y ∑y

√p1yp2y

∑y
√p2yp0y ∑y

√p2yp1y ∑y p2y

.
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Density matrices for joint distributions: III
• Note that this is not a pure state density matrix since, in

general, the off-diagonal entries are not the square root of
the product of the diagonal entries:

∑y
√piypky 6=

√
∑y piy

√
∑y pky =

√
pipk where i, k ∈ X.

• But pxy is an independent joint distribution if ∀x, y,
pxy = pxpy. Then and only then the off-diagonal terms in
the marginal distribution matrix are:

∑y
√piypky = ∑y

√pipypkpy = ∑y py
√

pipk =
√

pipk, i.e.,
the marginal distribution matrix is a pure state matrix

iff pxy = pxpy ∀x, y (i.e., pxy independent)
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Density matrices for joint distributions: IV

• All of this carries over, mutatus mutandis, to the quantum
case where the reduced density matrices ρA and ρB play the
role of the marginal distributions px and py:

• ρAB = |ψ〉 〈ψ| where |ψ〉 = ∑i,j αij |i〉 ⊗ |j〉,
• ρA = [α] [α]† and ρB = [α]† [α], and
• ρA and ρB are pure states iff ρAB = ρA ⊗ ρB.

• Restricting attention to the set analogue to the two qubit
case, we have the pure state density matrix:
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Density matrices for joint distributions: V

p0 =


√

p00√
p01√
p10√
p11

 [√p00
√

p01
√

p10
√

p11
]

=


p00

√
p00p01

√
p00p10

√
p00p11√

p00p01 p01
√

p01p10
√

p01p11√
p00p10

√
p01p10 p10

√
p10p11√

p00p11
√

p01p11
√

p10p11 p11

.

• The "alpha-coefficient matrix" is [α] =
[√

p00
√

p01√
p10

√
p11

]
and

px = [α] [α]
t =

[
p0X

√
p00p10 +

√
p01p11√

p00p10 +
√

p01p11 p1X

]
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Density matrices for joint distributions: VI

and

py = [α]
t [α] =

[
p0Y

√
p00p01 +

√
p10p11√

p00p01 +
√

p10p11 p1Y

]
.

• A correlated (i.e., non-independent) joint distribution pxy on
X× Y (using the set partition 0) is the set analogue of an
entangled (pure) state ρAB on HA ⊗HB in the quantum case
so:

Correlated pxy lifts to entangled ρAB

(and entangled ρAB de-lifts to correlated pxy).
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Density matrices for joint distributions: VII

• Given a numerical attribute T : X→ R on X, the marginal
distribution px has all the information needed to determine
the average value of T according to the joint distribution pxy
since:

T = ∑x,y pxyT (x) = ∑x T (x)∑y pxy = ∑x pxT (x).

• The lift of an attribute T : X→ R is a Hermitian operator T̂
on HA, the lift of the marginal distribution px is the reduced
density matrix ρA, and the lift for the average value is:〈

ρAB|T̂⊗ I|ρAB〉 = tr
[(

T̂⊗ I
)

ρAB] = tr
[
T̂ρA] = 〈ρA|T̂|ρA〉.
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Interpreting the reduced density matrices: I

• In the set case, the reduced density matrices px = [α] [α]
t

and py = [α]
t [α] for the marginal distributions of an

"entangled" joint distribution pxy are something new. They
are not density matrices pπ associated with a point
distribution {pi} and a partition π on the set of points.

• Previously, for our set versions of the density matrices pπ,
the off-diagonal terms were either

• √pipk (where pi and pk were the corresponding diagonal
terms) when (i, k) was an indistinction of the set partition π
(i.e., were in the same block); or

• 0 when (i, k) was a distinction of the set partition π (i.e.,
were in different blocks).
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Interpreting the reduced density matrices: II

• In either case, the off-diagonal term was an "indistinction
amplitude" whose absolute square was the indistinction
(according to π) probability in a pair of independent draws
from the distribution {pi}.

• This 0 or
√

pipk nature of the off-diagonal terms resulted
from de-lifting the orthogonal decomposition of a density
matrix ρ so that we had disjoint blocks B in the partition on
U. Now we are forming density matrices ρA and ρB. Later
we will give a canonical decomposition of the reduced
density matrices into a probability-weighted sum of pure
states (not necessarily orthogonal).
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Interpreting the reduced density matrices: III

• For the reduced density matrices px and py of an entangled
pxy, the off-diagonal terms (intermediate between the
extremes

√
pipk and 0) still represent indistinction

amplitudes but a pair (i, k) can be partially indistinct and
partially distinct (instead of the previous all-or-nothing
indistinction)!

• That is, instead of being identified or not by a partition π, a
pair of x’s (i, k) can partially overlap (where no overlap
means "distinction" and total overlap means
"indistinction").

• Focusing on px for illustrative purposes, a pair (i, k) for
i, k ∈ X overlap or are "indistinct" insofar as they are linked
by the y-probabilities piy and pky.
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Interpreting the reduced density matrices: IV

• Hence the off-diagonal term ∑y
√piypky is the sum of the

indistinction or overlap amplitudes for the pair (i, k), and

the (absolute) square
(

∑y
√piypky

)2
is the indistinction or

overlap probability for (i, k).
• The sum of those absolute squares is the trace of the square

of the density matrix px and their complement is the logical
entropy of px.

• Since ∑i,k pipk = 1, the logical entropy is:

h (px) = 1− tr
[
p2

x
]
= ∑i,k

[
pipk −

(
∑y
√piypky

)2
]

.
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Interpreting the reduced density matrices: V
• Since pipk is the probability of getting the pair (i, k) in a pair

of draws from the marginal distribution px and(
∑y
√piypky

)2
is the indistinction probability for (i, k), the

difference is the distinction probability. Hence we have:

h (px) = ∑i,k

[
pipk −

(
∑y
√piypky

)2
]

Logical entropy = ∑ [distinction probabilities].

• Although we have a more general structure than a set
partition with point probabilities (due to the partial
overlaps), the idea of logical entropy as the sum of
distinction probabilities still survives.

• All this lifts, mutatis mutandis, to the quantum case.
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Bijective or "Schmidt" special case: I

• Suppose the support of pxy on X× Y is the graph of a
bijection X↔ Y (the images in X and Y have the same
cardinality n) so that pxiyi = p (xi, yi) = pi for
i = 0, 1, ..., n− 1 and pxy = 0 otherwise.

• The probabilities pi are the set versions of the Schmidt
coefficients

√
pi squared in the quantum case.

• In the set version of the two qubit model, suppose the
bijection is 0X ↔ 0Y and 1X ↔ 1Y so the only two non-zero
probabilities are p00 and p11 on the mini-blob subset
B = {(0, 0) , (1, 1)} ⊆ X× Y. Then the density matrix is:
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Bijective or "Schmidt" special case: II

∣∣∣√pi|{(0,0),(1,1)}
〉 〈√pi|{(0,0),(1,1)}

∣∣∣ =

√

p00
0
0√
p11

 [√p00 0 0
√

p11
]

=


p00 0 0

√
p00p11

0 0 0 0
0 0 0 0√

p00p11 0 0 p11

.

• The matrix of coefficients is [α] =
[√

p00 0
0

√
p11

]
so the

marginal distributions are:

px = [α] [α]
t =

[
p00 0
0 p11

]
= [α]t [α] = py.
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Bijective or "Schmidt" special case: III

• Since the support of pxy is a bijection, there are no y’s
connecting two different x’s (and vice-versa) so there are no
partial overlaps in the density matrices for the marginal
distributions. They are the density matrices for the point
distribution {p00, p11} and the discrete partition on X and
on Y.
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Ignorance interpretation does not apply?: I

• In the quantum case, a density matrix ρ has the general
form as a probabilistic mixture of pure states:

ρ = ∑i pi |ψi〉 〈ψi|.

• The usual interpretation is as a statistical ensemble
consisting of the pure state ρi = |ψi〉 〈ψi| with probability pi,
which is sometimes called the ignorance interpretation.

• But when the density matrix is a reduced density matrix ρA

or ρB from an entangled pure state ρAB on HA ⊗HB, then it
is said that "the ignorance interpretation does not apply."

• It is said that "the ignorance interpretation does not apply"
since applying it to ρA = ∑i piρ

A
i and to ρB = ∑j qjρ

B
j , we

have:
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Ignorance interpretation does not apply?: II
• the component system A is in a pure state ρA

i with
probability pi, and

• the component system B is in a pure state ρB
j with

probability qj, so
• the joint system AB represented in HA ⊗HB is in the pure

product state ρA
i ⊗ ρB

j with probability piqj.
• Thus the composite system is in the mixed state

∑i,j piqjρ
A
i ⊗ ρB

j contrary to it being in the entangled pure
state ρAB.

• Hence "the ignorance interpretation does not apply" to the
reduced density matrices of pure entangled states. Yet they
are certainly density matrices, so it is said that "there are two
kinds of density matrices."

• For instance, Paul Busch talks about "two fundamentally
different uses of mixed state (’density’) operators":
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Ignorance interpretation does not apply?: III

"It is important to note that a pure entangled state of a
compound system necessarily yields a mixed state
description for each of its subsystems, and that these density
operators of the subsystems do not allow an ignorance
interpretation." [Busch, P. 2002. Classical versus quantum
ontology. Studies in History and Philosophy of Modern
Physics. 33: 517-539, p. 526]

• Or Bernard D’Espagnat:
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Ignorance interpretation does not apply?: IV

"Since mixtures of the E type [i.e., ρA or ρB] and
mixtures of the Ê type [i.e., ordinary ρ] are in principle
operationally different concepts, it is appropriate, at least
when fundamental problems are discussed, to differentiate
them... . In what follows, the expressions proper and
improper mixtures are used to designate mixtures of the Ê
and E types, respectively." [D’Espagnat, Bernard 1999.
Conceptual Foundations of Quantum Mechanics (2nd ed.),
Reading MA: Perseus Books. p. 61]
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Canonical decomposition of reduced density
matrices: I

• In the set case, probabilities occur as sampling probabilities
for outcomes in the sample space.

• In QM, probabilities occur in two ways:

• the sampling probabilities qk involved in a statistical ensemble
ρ =∑i pi |ψi〉 〈ψi| which are used in the ignorance
interpretation and

• the measurement probabilities for the outcome of a
measurement.
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Canonical decomposition of reduced density
matrices: II

• In the reduced density matrix ρB = [α]† [α] of a pure state
ρAB, the probabilities on the diagonal, pj = ∑i αijα

∗
ij, are

measurement probabilities, e.g., pj = ∑i αijα
∗
ij is the

probability of getting the outcome |j〉 in a measurement of
the second component of the state ρ = |ψ〉 〈ψ| where
|ψ〉 = ∑i,j αij |i〉 ⊗ |j〉 (using the measurement basis {|j〉}).

• We will present a canonical decomposition of a reduced
density matrix as a probabilistic sum of pure states where
the sampling probabilities over the pure states are those
measurement probabilities.

• The set case is presented with the quantum case an easy
generalization (mutatis mutandis).
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Canonical decomposition of reduced density
matrices: III

• The setting is a joint probability distribution pXY (x, y) = pxy
on the direct product X× Y of two finite samples spaces. To
construct the reduced density matrix for pX, the marginal
distribution over X, we construct the pure density matrix
for the conditional probability distribution Pr (x|y) over X
where the value of y is given. The sum of these pure density
matrices weighted by the probabilities for getting the
values of y, i.e., pY (y) = ∑x pxy, gives the canonical
decomposition for the reduced density matrix for pX.
Reversing the role of X and Y gives the canonical
decomposition for the reduced density matrix pY.

David Ellerman (UCR) Products of sets and vector spaces May 2012 24 / 37



Canonical decomposition of reduced density
matrices: IV

• For illustrative purposes, take X = {0, 1, 2} and Y = {0, 1}.
Then the pure density matrix for the conditional
distribution Pr (x|y) is: p0y/pY (y)

√p0yp1y/pY (y)
√p0yp2y/pY (y)√p0yp1y/pY (y) p1y/pY (y)
√p1yp2y/pY (y)√p0yp2y/pY (y)

√p1yp2y/pY (y) p2y/pY (y)


and the probability-weighted sum of these pure density
matrices is the reduced density matrix for the marginal
distribution over X:
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Canonical decomposition of reduced density
matrices: V

pX =

 ∑y p0y ∑y
√p0yp1y ∑y

√p0yp2y

∑y
√p1yp0y ∑y p1y ∑y

√p1yp2y

∑y
√p2yp0y ∑y

√p2yp1y ∑y p2y


=

∑y pY (y)

 p0y/pY (y)
√p0yp1y/pY (y)

√p0yp2y/pY (y)√p0yp1y/pY (y) p1y/pY (y)
√p1yp2y/pY (y)√p0yp2y/pY (y)

√p1yp2y/pY (y) p2y/pY (y)

.

Canonical decomposition of reduced density matrix pX

• The usual definition of the single probability number in the
marginal distribution pX (x) is

pX (x) = ∑y pXY (x, y) = ∑y pY (y)Pr (x|y).
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Canonical decomposition of reduced density
matrices: VI

• The above canonical expression for the reduced density
matrix for pX is just the density matrix version of that
summation. The probabilities pY (y) in the sum of the
weighted pure state density matrices are the measurement
probabilities for measuring or sampling the second
component.

• In each pure state matrix for Pr (x|y), the off-diagonal terms√piypjy/pY (y) give the indistinction amplitudes for an
X-pair (i, j) where i, j ∈ X and the square is the
indistinction probability for the X-pair given that y-value.

• If the original joint distribution is independent, i.e.,
pXY (x, y) = pX (x) pY (y), then all the pure state density
matrices for the conditional distributions are the same since:
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Canonical decomposition of reduced density
matrices: VII

√piypjy/pY (y) =
√

pX (i) pY (y) pX (j) pY (y)/pY (y) =√
pX (i) pX (j)

independent of y, and all the probability weights pY (y) sum to 1
so the reduced density matrix for X has the entries:√

pX (i) pX (j) and similarly for Y. And the Hadamard product
of those reduced density matrices gives the density matrix for
the independent joint distribution.

• The opposite to having all the pure state density matrices
Pr (x|y) being the same is to have them all be orthogonal,
and that occurs in the opposite situation of "maximal
entanglement" where the support of pXY is a bijection.

• These results extend, mutatis mutandis, to the quantum case.
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Bijective set example: I

• For instance, we can use the bijective special case
considered above with the pure state distribution with
probability p00 for (0X, 0Y) and p11 for (1X, 1Y) where
|X| = 2 = |Y|.

• Then pY (0) = p00 and pY (1) = p11, and the two pure state
density matrices are the two orthogonal matrices:

Pr (x|0) =
[

1 0
0 0

]
and Pr (x|1) =

[
0 0
0 1

]
and the reduced density matrix for X is:

p00

[
1 0
0 0

]
+ p11

[
0 0
0 1

]
=

[
p00 0
0 p11

]
= pX.

David Ellerman (UCR) Products of sets and vector spaces May 2012 29 / 37



Bijective set example: II

• When we apply independent sampling to the marginal
distributions as stand alone pdfs, then we obtain, say, a
draw of 0Y from Y with probability p00 and a draw of 1X
from X with probability p11, which together means a draw
of (1X, 0Y) from the "compound urn" X×Y with probability
p00p11.

• But the probability of (1X, 0Y) is p10 = 0 so something has
gone wrong.

• The problem lies in the implicit assumption that one can
independently draw from the Y-urn and from the X-urn and
get the probabilities for the pair-outcomes (x, y) when the
two urns are "entangled" by the joint distribution pXY.
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Bijective set example: III

• The canonical presentation of the reduced density matrices
automatically takes the entanglement into account when
one applies the "ignorance interpretation" using that
presentation–since the probability coefficients for say pX are
the Y-measurement probabilities for the other component.

• Thus to compute the probability of (1X, 0Y), we first
measure Y and get 0Y with probability p00 which
corresponds, using the ignorance interpretation, to taking
the pure state[

1 0
0 0

]
in the canonical pX = p00

[
1 0
0 0

]
+ p11

[
0 0
0 1

]
,

and then we see the probability of 1X is 0 in that pure state.
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Bijective set example: IV

• Thus applying the "ignorance interpretation" to the
canonical representation of the reduced density matrices
will give the correct results for the sampling/measurements
of the joint distribution.
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Reflections on mixed states and ignorance
interpretation: I

• The "ignorance interpretation" of a mixed state
ρ = ∑i pi |ψi〉 〈ψi| in terms of the "state" resulting from a
physicist sampling a probability distribution {pi} to decide
which pure state |ψi〉 to prepare–was always a bit of a
fantasy.

• The point is that Nature, in effect, samples a probability
distribution

{
αiα
∗
i
}

to decide which pure state |i〉 will result
from a measurement of |ψ〉 = ∑i αi |i〉 so the general result
of the measurement can be described by the mixed state:
ρ = ∑i αiα

∗
i |i〉 〈i|.
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Reflections on mixed states and ignorance
interpretation: II

• And then that general interpretation got into trouble when
applied to the reduced density matrices ρA and ρB resulting
from an entangled ρAB.

1 The first thing that got the ignorance interpretation into
trouble for ρA and ρB was the assumption that they are the
"states" of the component systems when ρAB is the state of
the composite system. Instead they describe the results of
certain measurements.

2 The second point is that the two component systems cannot
be measured or sampled independently when the composite
state is entangled.
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Reflections on mixed states and ignorance
interpretation: III

• We have given a canonical representation of the mixed state
reduced density matrices–as a probabilistic mixture of pure
state density matrices–so that the "ignorance interpretation"
of either reduced density matrix involves essentially the
measurements on the joint system that takes into account
the entanglement.

• In this manner, the "ignorance interpretation" can be
applied to reduced density matrices and it yields a correct
account of the measurement results of the joint system.
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Reflections on mixed states and ignorance
interpretation: IV

• For instance, in the set case, to compute the probability of
the result (x, y) using the reduced density matrix for
pX = ∑y pY (y)Pr (x|y), we in effect sample to get y with the
probability pY (y) which means taking the pure density
matrix Pr (x|y) with the diagonal probabilities pxy/pY (y)
for the outcome x so the probability of getting (x, y), i.e., x
by way of y, is the correct:

pY (y)
pXY(x,y)

pY(y)
= pXY (x, y).
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Products summary

Set case Quantum case
Direct product X× Y Tensor product HA ⊗HB{
pxy
}

joint pdf on X× Y Pure ρAB on HA ⊗HB

{px},
{

py
}

marginals ρA, ρB reduced density ops
pxy = pxpy indep. dist. ρAB = ρA ⊗ ρB product state
pxy 6= pxpy correlated ρAB 6= ρA ⊗ ρB entangled state

pxy indep. ⇒ px, py pure Product ρAB ⇒ ρA, ρB pure
Correlated pxy ⇒ px, py mixed Entangled ρAB ⇒ ρA, ρB mixed

∑x,y pxyT (x) = ∑x pxT (x)
〈
ρAB|T̂⊗ I|ρAB〉 = 〈ρA|T̂|ρA〉

Apply ig. int. to canonical rep Apply ig. int. to canonical rep
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Simple coding examples: I

• General idea: to find the average minimum number of
equiprobable binary questions needed per letter to identity
a probabilistic message. That is the interpretation of the
Shannon entropy H (p).

• Suppose the message is one letter, a, b, or c, and that pa =
1
2

while pb =
1
4 = pc.

• Then the picture is:
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Simple coding examples: II

a

b or c
b

c

• The pattern of answers to the binary questions give a
binary code for the messages where:

• ”a” = 1;
• ”b” = 01;
• ”c” = 00.
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Simple coding examples: III

• Thus the average #binary-coded questions, where
# (01) = 2 is the number of binary digits in the code, is:

1
2# (1) + 1

4# (01) + 1
4# (00) = 1

2 +
2
4 +

2
4 =

3
2

= H (p) = ∑i pi log2

(
1
pi

)
= 1

2 log (2) + 1
4 log (4) + 1

4 log (4).

• Now consider N = 2 letter messages with the same
probability distribution. Then the picture with the binary
codes is:
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Simple coding examples: IV

a

b or c

b

ca

b or c
b

c
a
b

a

b or c
b

c

c

b or c

aa = 11    #(11)/22

ab = 101  #(101)/23

ac = 100   #(100)/23

ba = 011   #(011)/23

bb = 0101 #(0101)/24

bc = 0100 #(0100)/24

ca = 001   #(001)/23

cb = 0001 #(0001)/24

cc = 0000 #(0000)/24
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Simple coding examples: V
• Again the average number of questions necessary to

identify the message is:

2
4 +

3
8 +

3
8 +

3
8 +

4
16 +

4
16 +

3
8 +

4
16 +

4
16

= 48
16 = 3 = 2H (p)

• And thus the average number of questions needed per letter
in the message is NH (p) /N = H (p).

• These examples are somewhat artificial since the
probabilities are all (negative) powers of 2 so we
immediately have a most efficient questioning scheme to
find the message and thus we have the minimum average
number of equiprobable binary questions ("bits") needed
per letter to find the message.
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A statistical example: I

• Suppose pa = pb = pc =
1
3 . Then a one-letter or two-letter

message cannot be exactly coded with a binary 0, 1 code
with equiprobable 0’s and 1’s.

• But any probability can be better and better approximated
by longer and longer representations in the binary number
system.

• Hence we can consider longer and longer messages of N
letters along with better and better approximations with
binary codes.

• The long run behavior of messages u1u2...uN where
ui ∈ {a, b, c} is modeled by the law of large numbers so that
the letter a will tend to occur paN = 1

3N times and similarly
for b and c.
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A statistical example: II

• Such a message is called typical.
• The probability of any one of those typical messages is:

ppaN
a ppbN

b ppcN
c =

[
ppa

a ppb
b ppc

c

]N

or, in this case, [(1
3

)1/3 (1
3

)1/3 (1
3

)1/3
]N
=
(1

3

)N
.

• Hence the number of such typical messages is 3N.
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A statistical example: III

• If each message was assigned a unique binary code, then
the number of 0, 1’s in the code would have to be X where
2X = 3N or X = log2

(
3N) = N log2 (3). Hence the number

of equiprobable binary questions or bits needed per letter of
the messages is:

N log2(3)/N = log2 (3) = 3× 1
3 log2

(
1

1/3

)
= H (p).

• This example shows the general pattern.
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Shannon Noiseless Coding Theorem: I

• Let p = (p1, ..., pn) be the probabilities over a n-letter
alphabet A = {a1, ..., an}.

• In an N-letter message, the probability of a particular
message u1u2...uN is ΠN

i=1 Pr (ui) where ui could be any of
the symbols in the alphabet.

• In a typical message, the ith symbol will occur piN times so
the probability of a typical message is (note change of
indices):

Πn
k=1ppkN

k =
[
Πn

k=1ppk
k

]N
.
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Shannon Noiseless Coding Theorem: II

• Since the typical messages are equiprobable, the number of

typical messages is
[
Πn

k=1p−pk
k

]N
and assigning a unique

binary code to each typical message requires X bits where

2X =
[
Πn

k=1p−pk
k

]N
so that:

X = log2

{[
Πn

k=1p−pk
k

]N
}
= N log2

[
Πn

k=1p−pk
k

]
= N ∑k log2

(
p−pk

k

)
= N ∑k−pk log2 (pk)

= N ∑k pk log2

(
1
pk

)
= NH (p).
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Shannon Noiseless Coding Theorem: III

• Hence the Shannon entropy H (p) = ∑k pk log2

(
1
pk

)
is

interpreted as the average number of bits necessary per
letter in the message.

• It is in this context of coding and communication that
Shannon’s Mathematical Theory of Communication supplies
the appropriate concept, not in the foundations of
information theory.
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Schmacher’s quantum version: I

• Alice is sending a message to Bob. Instead of seeing the
message being generated by a probability distribution
p = {p1, p2, ..., pn} over a set of n letters A = {a1, ..., an}, we
think of a mixed state ρ = ∑i pi |ψi〉 〈ψi|.

• But since the states |ψi〉, need not be orthogonal, we move
to the orthogonal decomposition of the mixed state:
ρ = ∑i qi |ϕi〉 〈ϕi| where

〈
ϕi|ϕj

〉
= δij.

• Then we can apply the classical Shannon theorem to a
classical typical sequence of N states |ϕi〉 with the
probabilities q = {qi}. The sequences are represented in
ever larger Hilbert spaces H⊗N and the typical sequences
span the typical subspace at each stage.
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Schmacher’s quantum version: II

• The limit on "compression" is again given by
NH (q) = NS (ρ) so the von Neumann entropy S (ρ) gives
the number of qubits needed per state |ϕi〉 to code a typical
sequence.

• Needless to say, this is essentially a straight lifting of
Shannon’s theorem to the quantum case:

• The set of n letters A = {a1, ..., an} are all completely distinct
from each other, and that lifts to the orthogonal states {|ϕi〉}
in the orthogonal decomposition of ρ;

• A sequence of N letters from A = {a1, ..., an} is an element of
the direct product AN lifts to a "sequence" of states∣∣∣ϕi1

〉
⊗
∣∣∣ϕi2

〉
⊗ ...⊗

∣∣∣ϕiN

〉
which is an element of the tensor

product H⊗N;
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Schmacher’s quantum version: III

• The subset of typical sequences of each power AN lifts to the
subspace generated by the typical sequences in H⊗N; and

• A typical sequence can be coded with H (p) bits of classical
information per letter which means that a typical sequence∣∣∣ϕi1

〉
⊗
∣∣∣ϕi2

〉
⊗ ...⊗

∣∣∣ϕiN

〉
can be coded with H (q) = S (ρ)

qubits of quantum information per state
∣∣∣ϕij

〉
.

• Schumacher’s Theorem thus provides a quantum
interpretation of the von Neumann entropy S (ρ) that
parallels the interpretation of the Shannon entropy H (p)
provided by Shannon’s Noiseless Coding Theorem.
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A new interpretation of logical entropy: I

• In Shannon’s statistical rendition of the entropy formula,
the use of "typical sequences" is a way of applying the law
of large numbers in the form:

limN→∞
1
N ∑N

j=1 xj = ∑n
i=1 pixi.

• Shannon’s Noiseless Coding Theorem supplies a statistical
average rendition of the probabilistic definition:

H (p) = ∑i pi log2

(
1
pi

)
where xi = log2

(
1
pi

)
.

• Since logical entropy h (p) = ∑i pi (1− pi) has a similar
probabilistic definition, it also can be rendered as a long run
statistical average.
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A new interpretation of logical entropy: II

• At each step j in repeated independent sampling u1u2...uN
of the probability distribution p = {p1, ..., pn}, the
probability that the jth result uj was not uj is 1− Pr (ui) so
the average probability of the result being different than it
was in the sequence is:

1
N ∑N

j=1 (1− Pr (ui)).

• In the long run, the typical sequences will dominate where
the ith outcome is sampled piN times so that we have:

∑N
j=1
(
1− Pr

(
uj
))

/N ≈ ∑n
i=1 piN (1− pi) /N = h (p).
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A new interpretation of logical entropy: III

• The logical entropy h (p) = ∑i pi (1− pi) is usually
interpreted as the two-draw probability of drawing distinct
outcomes from the distribution p = {p1, ..., pn}.

• Now we have a different interpretation of logical entropy as
the average probability of being different.
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Symmetry groups and their irreducible
representations

Group representation theory has important applications in
quantum mechanics.
Given the symmetry group of a certain model, what are the
distinct eigen-alternatives compatible with the symmetries?
As usual, the distinct eigen-alternatives are determined by the
’discrete’ or nondegenerate join of partitions that distinguish the
alternatives, and the partitions are given by a complete set of
commuting operators (CSCO).
In group representation theory, the distinct eigen-alternatives are
the irreducible representations (irreps) and their carriers, the
irreducible subspaces.
In particle physics, "an elementary particle ’is’ an irreducible
unitary representation of the group, G of physics,..." [Sternberg,
Group Theory and Physics, 1994]
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Columns of Hadamard Tensor Powers as Irreps

The 2n columns (or rows) of the 2n × 2n matrix H⊗n, which are the
1,−1-recoded 2n parity functions (normalized) for the subsets of an
n-element set {a, b, ..., c}, are also the irreps for Zn

2
∼= ℘ ({a, b, ..., c})

when viewed as additive (Abelian) group:

(x1, ..., xn) + (y1, ..., yn) = (x1 +2 y1, ..., xn +2 yn).

In terms of subsets in ℘ ({a, b, ..., c}), the group operation is the
symmetric difference operation on subsets.
Hence we can use H⊗n as a tool to introduce irreps and to see irreps as
the eigen-alternatives determined by certain CSCOs.
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Group ops as linear operators on group space

The vector space of functions V(Zn
2) = {Zn

2 → C} is variously
called the group algebra or group space of Zn

2 with standard basis |x〉
for x = (x1, ..., xn) ∈ Zn

2 .
We write the group op multiplicatively so as not to confuse it with
formal sums in the group space.
Each group element s ∈ Zn

2 defines a linear operator
Ts : V(Zn

2)→ V(Zn
2) which is defined applying the group

operation s to the standard basis vectors: Ts (|x〉) = |s · x〉 (where
s · x is the group operation in Zn

2), and then extended linearly to
the whole space.
The linear operators represented as matrices are just permutation
matrices applied to the standard basis vectors (since the group
operation carries one group element to another and each group
element defines a basis vector).
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Simplest example of n = 1: I

For n = 1, the group is Z2
∼= ℘ (1) which, taken multiplicatively,

is permutation group S2.

V (Z2) = {Z2 → C} ∼= C2 is the two-dim. space over C where the
standard basis vectors are |0〉 and |1〉.
The linear op T0 is the identity and T1 just interchanges the basis
vectors.

T0 =
|0〉 |1〉

|0〉 1 0
|1〉 0 1

and T1 =
|0〉 |1〉

|0〉 0 1
|1〉 1 0

The operators commute so the join of the eigenspace partitions is
defined.
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Simplest example of n = 1: II

For non-Abelian groups, we would have to consider sums of such
operators for conjugacy classes of group elements but we can skip
those complications by sticking to the Abelian groups Zn

2 in this
introductory treatment.

The identity operator always has the whole space as eigenspace
with eigenvalue λ = 1 (indiscrete partition).

The interchange operator T1 has one eigenspace
{
[1, 1]t

}
with

λ = 1 and another eigenspace
{
[1,−1]t

}
with λ = −1.

The join of the two vector space partitions is nondegenerate.

The simultaneous eigenvectors (normalized with positive top
entry) are the columns (or rows) of the Hadamard matrix
H = H⊗1.
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Application to n = 1 variable functions

Consider the vector space of functions f : R→ R.
Define the interchange operation as f (x) 7−→ f (−x) in addition to
the identity f (x) 7−→ f (x) so that S2 operates on that space of
functions.
The irreps provide a vector space partition of the space into the:

1 Even functions 1
2 [f (x) + f (−x)], and the

2 Odd functions 1
2 [f (x)− f (−x)].

Per usual with a vector space partition, an arbitrary function can
be decomposed into a unique sum of an even function and an odd
function:

f (x) = 1
2 [f (x) + f (−x)] + 1

2 [f (x)− f (−x)].

Not coincidentally, the two types of functions are associated with
the two types of parity.
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Simplest non-trivial example of n = 2: I

For n = 2, the group is Z2
2
∼= ℘ (2), which taken multiplicatively is

the Klein four-group as well as the dihedral group D2.

We represent a symmetry group like D2 as starting with an
original configuration such as b

c�a
d and then to represent each

symmetry operation by the resulting configuration. For instance,
the rotation C2 around 180◦ gives the configuration d

a�c
b. The

dihedral group D2 also has the symmetry operations: Ch
2 =

flipping around the horizontal axis and Cv
2 = flipping around the

vertical axis. If we think of the top side as the light square, then
flipping shows the ’dark underside’ so Cv

2 gives a
d�b

c and Ch
2 gives

c
b�d

a .

The group multiplication table is as follows (column op. applied
first):
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Simplest non-trivial example of n = 2: II
D2 I C2 Ch

2 Cv
2

I b
c�a

d
d
a�c

b
c
b�d

a
a
d�b

c
C2

d
a�c

b
b
c�a

d
a
d�b

c
c
b�d

a
Ch

2
c
b�d

a
a
d�b

c
b
c�a

d
d
a�c

b
Cv

2
a
d�b

c
c
b�d

a
d
a�c

b
b
c�a

d

Each group operation defines a linear operator on
V
(
Z2

2
) ∼= C2 ⊗C2 which is represented by a permutation matrix

(op. applied to column symbol gives row symbol). The
non-identity ones are:

1

TC2
b
c�a

d
d
a�c

b
c
b�d

a
a
d�b

c
b
c�a

d 0 1 0 0
d
a�c

b 1 0 0 0
c
b�d

a 0 0 0 1
a
d�b

c 0 0 1 0
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Simplest non-trivial example of n = 2: III

2

TCh
2

b
c�a

d
d
a�c

b
c
b�d

a
a
d�b

c
b
c�a

d 0 0 1 0
d
a�c

b 0 0 0 1
c
b�d

a 1 0 0 0
a
d�b

c 0 1 0 0

3

TCv
2

b
c�a

d
d
a�c

b
c
b�d

a
a
d�b

c
b
c�a

d 0 0 0 1
d
a�c

b 0 0 1 0
c
b�d

a 0 1 0 0
a
d�b

c 1 0 0 0

These 3 permutation matrices along with the identity commute so
we can take the join of their eigenspace partitions.
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Example n = 2; Eigenspace partitions: I

As always, TI has the indiscrete eigenspace partition with λ = 1.

1 TC2 :




1
−1
1
−1

 ,


1
−1
−1
1


 λ = −1;




1
1
1
1

 ,


1
1
−1
−1


 λ = 1

2 TCh
2
:




1
1
−1
−1

 ,


1
−1
−1
1


 λ = −1;




1
1
1
1

 ,


1
−1
1
−1


 λ = 1

3 TCv
2
:




1
−1
1
−1

 ,


1
1
−1
−1


 λ = −1;




1
1
1
1

 ,


1
−1
−1
1


 λ = 1
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Example n = 2; Eigenspace partitions: II
Join of eigenspace partitions is nondegenerate and the
simultaneous eigenvectors are the irreducible representations or
irreps of the group:

1
1
1
1

,


1
−1
1
−1

,


1
1
−1
−1

,


1
−1
−1
1


Normalized (with positive top entry), they are the columns of
H⊗2.

H⊗2 = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


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Irreps as maximally distinct eigen-alternatives: I

The standard basis vectors in
{

Z2
2 → C

}
can be visually

represented by the four configurations resulting from the four
operations of D2 which is isomorphic to Z2

2.
Then the irreps as the simultaneous eigenvectors of the four
commuting operators defined by the group operations are given
in the following table along with the n-tuples of eigenvalues that
characterize each irrep (where we have also simplified the
configuration symbols).

χ(i)
∣∣∣λ(i)0 , λ

(i)
1 , λ

(i)
2 , λ

(i)
3

〉
χ(0) = �a +�c +�d +�b |1, 1, 1, 1〉
χ(1) = �a +�c −�d −�b |1, 1,−1,−1〉
χ(2) = �a −�c +�d −�b |1,−1, 1,−1〉
χ(3) = �a −�c −�d +�b |1,−1,−1, 1〉

David Ellerman (UCR) Introduction to Irreducible Representations May 2012 13 / 17



Irreps as maximally distinct eigen-alternatives: II

Note firstly that each subspace generated by the irreps is invariant
under all the operations (which we already know since they are
simultaneous eigenvectors).
For instance, apply C2, the 180◦ rotation, to
χ(2) = �a −�c +�d −�b to get:

C2

(
χ(2)

)
= �c −�a +�b −�d = −1χ(2) where λ

(2)
1 = −1.

But the whole space or any subspace generated by subsets of the
irreps is also invariant.
The distinctive feature of the irreps is they are the minimal
invariant subspaces which means they are maximally distinguished
invariant subspaces. They are carved out by the (nondegenerate)
join of the eigenspace partitions as indicated by the ordered
n-tuples of their eigenvalues.
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Irreps as maximally distinct eigen-alternatives: III

Just as an element of a set may be maximally distinguished from
other elements by its values in a complete set of attributes, e.g.,
height, weight, age,..., so each irrep is characterized by the
ordered n-tuple of eigenvalues for the complete set of commuting
operators (CSCO) for the group operations.
Thus χ(2) is characterized by its eigenvalue labels |1,−1, 1,−1〉
which are the values of the irrep "eigenstate" under the
"observable" operators TI, TC2 , TCh

2
, and TCv

2
.

With only two eigenvalues, a yes-or-no game of "20 questions"
characterizes χ(2):

1 Question 1: For observable TI, is λ = 1? Yes.
2 Question 2: For observable TC2 , is λ = 1? No.
3 Question 3: For observable TCh

2
, is λ = 1? Yes.

4 Question 4: For observable TCv
2
, is λ = 1? No.
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Application to n = 2 variable functions: I

Vector space of 2-variable functions V = {f : R×R→ R}. Define the
group operations: I: f (x, y) 7−→ f (x, y); C2: f (x, y) 7−→ f (x,−y); Ch

2:
f (x, y) 7−→ f (−x, y); Cv

2: f (x, y) 7−→ f (−x,−y). This is a group
representation D→ Lin (V, V) if it satisfies group mult. table.

D2 I C2 Ch
2 Cv

2

I f (x, y) f (x,−y) f (−x, y) f (−x,−y)
C2 f (x,−y) f (x, y) f (−x,−y) f (−x, y)
Ch

2 f (−x, y) f (−x,−y) f (x, y) f (x,−y)
Cv

2 f (−x,−y) f (−x, y) f (x,−y) f (x, y)
Then the irreps define the four types of functions:

1 1
4 [f (x, y) + f (x,−y) + f (−x, y) + f (−x,−y)]; x, y even;

2 1
4 [f (x, y)− f (x,−y) + f (−x, y)− f (−x,−y)]; x even, y odd;

3 1
4 [f (x, y) + f (x,−y)− f (−x, y)− f (−x,−y)]; x odd, y even;

4 1
4 [f (x, y)− f (x,−y)− f (−x, y) + f (−x,−y)]; x odd, y odd.
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Application to n = 2 variable functions: II

Per usual with partitions, any function f (x, y) is uniquely the sum
of functions of the four types.

Not coincidentally, the four types are associated with the four
parity basis functions χs for n = 2.

If s = (0, 0) , (0, 1) , (1, 0) , or (1, 1), then the parity function χs
gives the sign pattern, e.g., for s = (0, 1), χ(0,1) gives the pattern
(+,−,+,−) for the second type of symmetrized function
1
4 [f (x, y)− f (x,−y) + f (−x, y)− f (−x,−y)].
The general case for any n gives the 2n distinct eigen-alternatives
types of parity, e.g., to classify the parity types of n-variable
functions f (x1, ..., xn).

Those 2n types of parity are given by the sign patterns in the
columns of H⊗n.
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