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Abstract

This book is an introduction to the logic of partitions on a set as well as the (quantum) logic
of partitions (direct-sum decompositions or DSDs) on a vector space. Partitions of a set are
categorically dual to subsets of a set. Thus the logic of partitions is, in that sense, the dual to
the Boolean logic of subsets (usually presented as the special case of propositional logic). Since
partitions can be seen as the inverse image partitions of random variables or numerical attributes
(without the actual values but retaining the information as to when the values are the same
or different), partition logic is the logic of random variables or numerical attributes (abstracted
from the actual values). On the lattice of partitions of an arbitrary unstructured set, there
is a rich algebraic structure of dual operations of implication and co-implication—resembling a
non-distributive version of Heyting and co-Heyting algebras.

Subsets linearize to subspaces of a vector space and the usual quantum logic is the logic of
the (closed) subspaces of the Hilbert spaces used in quantum mechanics (QM). Set partitions
linearize to DSDs of a vector space so the logic of partitions linearizes to the logic of DSDs that
can then be specialized to the Hilbert spaces of QM. Since each diagonalizable linear operator,
e.g., the observables of QM, on a vector operator determines a DSD of eigenspaces so the
quantum logic of DSDs is the logic of observables (abstracted from the actual eigenvalues).
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1 The logical operations on set partitions

1.1 Introduction to partitions

1.1.1 The two mathematical logics of subsets and partitions

There are fundamentally two mathematical logics. One the Boolean logic of subsets [7], usually
presented today in the special case of propositional logic, which has many sublogics and extensions,
the most important being the intuitionistic logic usually modeled by the open subsets of a topological
space. The other co-fundamental mathematical logic is the topic of this book, the logic of partitions.
We are using "logic" in a mathematical sense as being about basic mathematical objects, subsets
of a universe set or partitions on a universe set.1 Logic, in this mathematical sense, is not about
propositions, although, as with any mathematical theory, it involves propositions about the basic

1We are not using the word "logic" for any syntactic axiom system using logical connectives, but as a theory about
certain fundamental mathematical notions. Indeed, today a Hilbert-style axiom system for partition logic has yet to
be developed.
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objects, e.g., that an element is in a subset or that a distinction is made by a partition. Moreover,
by taking the universe set to be the one element set 1, with two subsets ∅ and 1, there is a special
case of subset logic, namely propositional logic, that can be interpreted as being about propositions
with ∅ representing falsehood and 1 representing truth.

In the nineteenth century, what is now called "propositional logic," was developed as the logic
of subsets.

The algebra of logic has its beginning in 1847, in the publications of Boole and De Morgan.
This concerned itself at first with an algebra or calculus of classes, to which a similar
algebra of relations was later added. Though it was foreshadowed in Boole’s treatment
of "Secondary Propositions," a true propositional calculus perhaps first appeared from
this point of view in the work of Hugh MacColl, beginning in 1877. [10, pp. 155-56]

Today the original subset version of propositional logic seems to be most often noted in the context
of the category-theoretic treatment.

The propositional calculus considers "Propositions" p, q, r,... combined under the op-
erations "and","or", "implies", and "not", often written as p ∧ q, p ∨ q, p ⇒ q, and
¬p. Alternatively, if P , Q, R,... are subsets of some fixed set U with elements u, each
proposition p may be replaced by the proposition u ∈ P for some subset P ⊂ U ; the
propositional connectives above then become operations on subsets; intersection ∧, union
∨, implication (P ⇒ Q is ¬P ∨Q), and complement of subsets.[40, p. 48]

Why should partition logic be paired with subset logic as the two fundamental mathematical
logics? The answer to that question awaited the development of category theory and the associated
notion of duality developed in the 1940’s ([14]; [38])—although it was foreshadowed in the parallelism
or ‘duality’between the subobjects (subsets, subgroups,...) and quotient objects (quotient sets, quo-
tient groups,...) in pre-category-theoretic abstract algebra. The category-theoretic dual to a subset
or more generally a subobject or ‘part’is a quotient set (or equivalently, an equivalence relation or
partition) or more generally a quotient object. "The dual notion (obtained by reversing the arrows)
of ‘part’is the notion of partition." [36, p. 85] F. William Lawvere and Robert Rosebrugh go on to
treat "Logic as the Algebra of Parts" [36, p. 193] but do not suggest a dual logic as the algebra of
partitions.

Partition logic is at the same mathematical level as subset logic since the semantic models for
both are constructed from (partitions on or subsets of) arbitrary unstructured universe sets with no
topologies, no ordering relations, and no compatibility or accessibility relations on the sets.

Since the Boolean logic of subsets was known in the nineteenth century and category-theoretic
duality was known since the middle of the twentieth century, why did it take until the early twenty-
first century for the logic of partitions to be developed? ([15]; [16]) One partial answer is simply the
almost exclusive presentation of Boolean logic as propositional logic, and "propositions" do not have
a mathematical dual (only a complement). The basic object of Boolean logic, i.e., subsets, needed
to presented at the right level of generality in order for the dual notion of partitions to be clear.

Another partial answer was the lack to the logical operations on partitions beyond the join and
meet. Those lattice-theoretic operations on partitions were known in the nineteenth century (e.g.,
Richard Dedekind and Ernest Schröder), but a logic to compare to subset logic awaited at least
the operation of implication on partitions, if not the whole set of 16 binary logical operations. Yet,
throughout the twentieth century, the only operations on partitions that were defined and studied
were the lattice operations of join and meet. In a 2001 paper commemorating Gian-Carlo Rota, the
three authors first note the fundamentality of partitions and then acknowledge the sole operations
of join and meet.

3



Equivalence relations are so ubiquitous in everyday life that we often forget about their
proactive existence. Much is still unknown about equivalence relations. Were this situa-
tion remedied, the theory of equivalence relations could initiate a chain reaction gener-
ating new insights and discoveries in many fields dependent upon it.
This paper springs from a simple acknowledgement: the only operations on the family

of equivalence relations fully studied, understood and deployed are the binary join ∨ and
meet ∧ operations.[9, p. 445]

Gian-Carlo Rota indeed had the idea of developing a logic of equivalence relations or partitions,
but without the implication operation, the only identities would be those formulas that hold on all
lattices of partitions. Moreover, it was known that partitions are so versatile that the only identities
that hold on all lattices of partitions or equivalence relations are the general lattice-theoretic identities
[50]. Hence without the implication or other logical operations on partitions, the only way to develop
a specific logic of equivalence relations was to focus on a specific type such as commuting equivalence
relations [13], and that is what Rota and colleagues did [25].

1.1.2 The duality of elements and distinctions

The duality between subsets and partitions can be traced back to a more basic duality between the
elements of a subset and the distinctions of a partition (‘its’and ‘dits’). In the category Set of sets
and functions, the objects are sets and the morphisms are functions between sets. The notion of a
function is naturally defined using the dual notions of elements and distinctions.

Given two sets X and Y , consider a binary relation R ⊆ X × Y .
The relation R is said to transmit elements if for all x ∈ X, there is an ordered pair (x, y) ∈ R

for some y ∈ Y .
The relation R is said to reflect elements if for all y ∈ Y , there is an ordered pair (x, y) ∈ R for

some x ∈ X.
The relation R is said to transmit distinctions if for any (x, y) ∈ R and (x′, y′) ∈ R, if x 6= x′,

then y 6= y′.
The relation R is said to reflect distinctions if for any (x, y) ∈ R and (x′, y′) ∈ R, if y 6= y′, then

x 6= x′.
It might be noted that the definitions of "reflect" and "transmit" just interchange the roles of X
and Y . Then a binary relation R is said to be functional or to define a function if it is defined
everywhere on X, i.e., transmits elements, and if it is single-valued, i.e., reflects distinctions. The
dual "turn-arround-the-arrows" notion of a morphism in the opposite category Setop is obtained
by interchanging elements and distinctions, i.e., a cofunction is a binary relation R that transmits
distinctions and reflects elements. In this manner, the notion of duality in Set, that provides the
duality between subsets and partitions, can be traced back to elements and distinctions [22]. It
might also be noted that when R transmits elements and reflects distinctions so that it is a function
f : X → Y , then the two special types of functions, injective (one-to-one) and surjective (onto) are
defined respectively as transmitting distinctions and reflecting elements. Each function f : X → Y
has an associated subset, namely the image f (X) ⊆ Y , and an associated partition, namely the
inverse-image or coimage (or kernel)

{
f−1 (y)

}
y∈f(X)

.

1.1.3 Partitions and equivalence relations

A partition π = {..., B, ..., B′, ...} on a universe set U (arbitrary cardinality unless otherwise specified)
is a set of subsets, called blocks (or sometimes cells), B,B′, ... of U that are pairwise disjoint and
whose union is U . An alternative definition is that a partition π = {..., B, ..., B′, ...} is a set of subsets
of U such that every subset S ⊆ U can be uniquely represented as a union of subsets of the blocks.
If the union of the blocks did not exhaust U , then the difference U − ∪B∈πB 6= ∅ would not be
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represented by a union of subsets of the blocks. And if any B ∩B′ 6= ∅, then that non-empty subset
could be represented in two ways by subsets of the blocks.

A distinction or dit of a partition π is an ordered pair of elements (u, u′) in different blocks of the
partition, while an indistinction or indit of π is an ordered pair of elements (u, u′) in the same block.
The ditset dit (π) ⊆ U×U of π is the sets of distinctions, and the inditset indit (π) = U×U−dit (π)
is the set of indistinctions of π:

indit(π) = ∪B∈πB ×B and dit (π) = ∪B,B′∈π,B 6=B′B ×B′.

Figure 1.1: Distinctions and indistinctions of a partition

An equivalence relation E ⊆ U ×U on U is a binary relation that is reflexive (for all u ∈ U , (u, u) ∈
E), symmetric (for any u, u′ ∈ U , if (u, u′) ∈ E, then (u′, u) ∈ E), and transitive (for any u, u′, u′′ ∈
U , if (u, u′) ∈ E and (u′, u′′) ∈ E, then (u, u′′) ∈ E). As a binary relation indit (π) ⊆ U × U on U ,
the inditset is the equivalence relation associated with π, and the ditset dit (π) = U×U− indit (π) is
its complement. A partition relation R on U (also called an "apartness relation") is the complement
of an equivalence relation in U ×U so it is irreflexive (i.e., (u, u) /∈ R for all u ∈ U), symmetric, and
intransitive (i.e., for any (u, u′′) ∈ R and any u′ ∈ U either (u, u′) ∈ R or (u′, u′′) ∈ R, or, in other
words, U × U − R is transitive). Every equivalence relation on U is the inditset of a partition on
U (take the blocks as the equivalence classes) and vice-versa. Every partition relation on U is the
ditset of a partition on U and vice-versa.

There is a suggestive analogy between equivalence and partition relations and the closed and
open subsets of a topological space T . The complement of a closed set of T is an open set, and the
intersection of an arbitrary number of closed subsets is closed. Given an arbitrary subset S ⊆ T , the
topology on T defines the closure S (i.e., the intersection of all closed subsets containing S) which
is the smallest closed set containing S. And given S, there is the largest open subset int (S) ⊆ S
contained in S which is obtained by the complement of the closure of the complement, i.e., int (S) =(
Sc
)c
.
Partition logic does not assume any topology or other structure on the universe U . Nevertheless,

an arbitrary subset S ⊆ U × U = U2 has a naturally defined reflexive, symmetric, and transitive
(RST) closure S which could be obtained as the intersection of all equivalence relations (≈ "closed
subsets") containing S. That is the smallest equivalence relation or inditset containing S. Similarly,
given any subset S ⊆ U × U , the largest partition relation or ditset contained in S is obtained
as int (S) =

(
Sc
)c
. Since the intersection of an equivalence relation is an equivalence relation,

we know that the union of partition relations or ditsets is always a partition relation or ditset.
Thus int (S) can also be obtained as the union of all the partition relations contained in S. Since
int (S) =

(
Sc
)c

= dit(π) for some partition π on U , we also have: indit(π) = Sc.
But the analogy is not complete; otherwise partition logic would just be a special case of the

intuitionistic logic of open subsets. In particular, the RST closure operation is not topological in
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the sense that the union of RST-closed subsets of U × U , i.e., the union of equivalence relations, is
not necessarily a RST-closed subset (an equivalence relation). As will be later seen, there are valid
formulas of partition logic that are not valid in intuitionist logic and there are intuitionistic validities
that are not valid in partition logic—although the valid formulas of both these logics are properly
contained in the classical tautologies of subset logic.

1.2 The join and meet operations on partitions

1.2.1 The set-of-blocks definitions of join and meet

The lattice operations of join and meet of partitions will first be defined in the traditional (i.e., nine-
teenth century) way in terms of their blocks, and then in some equivalent new ways that generalize
easily to the other logical operations. Let Π (U) be the set of all partitions on U (where to avoid
trivialities, we assume |U | ≥ 2).

Given two partitions π = {, , , B, ..., B′, ...} and σ = {..., C, ..., C ′, ...} in Π (U), the join π ∨ σ is
the partition whose blocks are the non-empty intersections B ∩ C for B ∈ π and C ∈ σ. The union
of two ditsets is a ditset, and indeed:

dit(π) ∪ dit (σ) = dit (π ∨ σ).

The meet of π and σ, written π ∧ σ, may be defined using the notion of two blocks B ∈ π and
C ∈ σ having a non-empty intersection, written B G C (following Ore [41]). If two blocks intersect,
think of them as blobbing together like two touching drops of a liquid. Then we could have a sequence
B G C G B′ G C ′ G ... and the blocks of the meet are the minimal unions of such sets of overlapping
blocks that have no overlaps with blocks outside the union. Hence the blocks of the meet are the
smallest subsets of U that are a union of some blocks of π and also a union of some blocks of σ. It
was previously noted that the RST-closure operation was not topological in the sense that the union
of two inditsets is not necessarily an inditset. Hence the intersection of two ditsets is not necessarily
a ditset, but we can take the interior int [dit (π) ∩ dit (σ)]. To prove that is the ditset of the meet,
consider two elements u and u′ as being directly equated, u ∼ u′ if u and u′ are in the same block
of π or σ so the set of directly equated pairs is: indit (σ) ∪ indit (π). Then u and u∗ are in the same
block of the meet in Π(U) if there is a finite sequence u = u1 ∼ u2 ∼ ... ∼ un = u∗ that indirectly
equates u and u∗. The operation of indirectly equating two elements is just the closure operation in
the closure space so the set of pairs indirectly equated, i.e., equated in the meet σ ∧ π in Π(U), is:

indit (σ ∧ π) = (indit (σ) ∪ indit (π)).

The complementary subset of U × U is the dit set of the meet of the partitions:

dit (σ ∧ π) = indit (σ ∧ π)
c

= (indit (σ) ∪ indit (π))
c

= int (dit (σ) ∩ dit (π)).

The partial order on the set of partitions Π (U) on U that makes these operations in the least
upper bound and greatest lower bound respectively is the refinement partial ordering: σ is refined
by π or π refines σ, written σ - π, if for every B ∈ π, there is a block C ∈ σ such that B ⊆ C. In
terms of functions, π and σ define the canonical surjections U → π and U → σ (take each element
of U to its block in π or σ), σ - π if and only if (iff) there exists a function π → σ to make the
following triangle commute, i.e., U → π → σ = U → σ:

U −→ π
↓ ∃ ↙
σ
σ - π.
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Refinement is a partial ordering in the sense that it is reflexive, transitive, and anti-symmetric (i.e.,
if σ - π and π - σ, then σ = π). Moreover, the refinement relation on partitions is just the inclusion
partial order on their ditsets (or partition relations):

σ - π iff dit (σ) ⊆ dit (π).

Then it follows from dit (σ) ∪ dit (π) = dit (π ∨ σ) that the join π ∨ σ is the least upper bound on
π and σ. Similarly, it follows from int [dit (π) ∩ dit (σ)] = dit (π ∧ σ) that the meet is the greatest
lower bound on π and σ. It should be noted that many of older texts ([4]; [28]) actually deal with
the lattice of equivalence relations with the partial order of inclusion even thought it may be called
the "lattice of partitions." Since that is the opposite partial order, the join and meet operations are
interchanged.

The join and meet operations on partitions make Π (U) into a lattice. Moreover, the lattice
Π (U) always has a maximum element or top 1U = {{u}}u∈U , called the discrete partition, whose
blocks are the singletons of the elements of U so that dit (1U ) = U × U −∆ where ∆ = indit (1U )
is the diagonal set of self-pairs (u, u) for u ∈ U . And the lattice also has a minimum partition or
bottom 0U = {U}, called the indiscrete partition,2 with only one block U so that dit (0U ) = ∅ and
indit (0U ) = U × U .

Let O (U × U) be the set of ditsets (partition relations) as the ‘open’subsets of U × U ordered
by inclusion and with the join being union and the meet being the interior of the intersection. The
result is a lattice isomorphic to the lattice of partitions Π (U) under the mapping π 7−→ dit (π) so
the lattice of partitions is represented by the ‘open’subsets of U × U :

Π (U) ∼= O (U × U),

The dual counterpart to the lattice of partitions Π (U) on U is the lattice of subsets ℘ (U) of U .
The duality carries through to the elements and distinctions on each side as indicated in Table 1.1.

Its & Dits Lattice ℘ (U) of subsets of U Lattice of partitions Π (U) on U

Its or Dits Elements of subsets Distinctions of partitions
Partial order Inclusion of subsets Inclusion of ditsets
Join Union of subsets Union of ditsets
Meet Subset of common elements Ditset of common dits
Top Subset U with all elements Partition 1U with all distinctions
Bottom Subset ∅ with no elements Partition 0U with no distinctions
Table 1.1: Elements and Distinctions (Its & Dits) duality between two lattices

The lattice of subsets is degenerate if the top equals the bottom as in the case of ℘ (∅) so it
is commonly assumed that |U | ≥ 1 when working with the lattice or Boolean algebra of subsets of
U . In the partition case, there two degenerate cases where the top equals the bottom, namely for
U = ∅ or U = 1 (the one element set). The partition {1} is the inverse-image of any function 1→ Y
and the empty partition ∅ is the inverse-image of the unique empty function ∅ → Y . Hence, unless
otherwise stated, we will assume |U | ≥ 2.

1.2.2 The ditset definitions of join and meet

The previous definitions of the join and meet were given in terms of the blocks of the partitions
so they might be called the "set-of-blocks" definitions. But then it was noted that dit (π ∨ σ) =
dit (π) ∪ dit (σ) and dit (π ∧ σ) = int [dit (π) ∩ dit (σ)]. That means that we can define the join and
meet in terms of the ditsets and the interior operation. That gives us the ditset definitions of the
lattice operations.

2 It is nicknamed the ‘blob’since it absorbs everything it meets: 0U ∧ π = 0U .
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To see the equivalence in the join definitions, if (u, u′) is in one of the ditsets, say dit (π), then
u ∈ B and u′ ∈ B′ for some B 6= B′, so u ∈ B ∩C for some C ∈ σ and u′ ∈ B′ ∩C ′ for some C ′ ∈ σ
(even when C = C ′) so (u, u′) is a dit of the set-of-blocks defined π ∨ σ. Conversely if (u, u′) is a dit
of the set-of-blocks definition, i.e., u ∈ B ∩ C and u′ ∈ B′ ∩ C ′, and even if B = B′ or C = C ′ but
not both, then (u, u′) is in one of the ditsets.

The ditset definition of the meet π∧σ immediately establishes it as the greatest lower bound on π
and σ so to prove the equivalence with the set-of-blocks definition, it suffi ces to show that the set-of-
blocks approach also gives the greatest lower bound. Consider any lower bound τ = {..., D, ...,D′, ...}
such that τ - π, σ. Then for any B ∈ π, there is a D ∈ τ with B ⊆ D and for any C ∈ σ, there is
a D′ ∈ τ with C ⊆ D′. But consider any block in π ∧ σ which is an exact union of blocks of π and
at the same time an exact union of blocks of σ. Consider any B contained in that meet-block. It is
contained in a block D ∈ τ , but B intersects some C ∈ σ, i.e., B G C, and thus B∩C ⊆ D. But that
means that the block of τ that C is contained must be the same D. And the reasoning is similar
down the chain of intersections B G C G B′ G ... so all the π-blocks and the σ-blocks in that chain
of intersections must be contained in the same D ∈ τ , thus that block of the meet π ∧ σ (the union
of those intersecting blocks) must be contained in that D ∈ τ so τ - π ∧ σ, i.e., the set-of-blocks
defined meet is the greatest lower bound in the refinement partial ordering.

1.2.3 The graph-theoretic definitions of join and meet

Every partition π on U defines a graph Gph (π) on the elements of U as the vertices (or nodes) and
which is simple (at most one link or arc between any two vertices), undirected, and whose set of
links or arcs is simply indit (π). Thus the graph Gph (0U ) associated with the indiscrete partition
0U is the complete graph K (U) on U (a link between any two vertices plus a loop at each vertex)
and Gph (1U ) is the graph with only the loops at the vertices.

The graph-theoretic approach to defining logical operations on partitions [21] starts with the
complete graph K (U). Then for any partition π on U and any link u − u′, mark the link with Tπ
if (u, u′) ∈ dit (π) and with Fπ if (u, u′) ∈ indit (π). Doing the same with another partition σ on U
will result in each link being labeled with ‘truth-values’such as uTσ,Fπu′. Then for the join, meet,
or any binary logical (truth-functional) operation, label the link with the appropriate truth value
for that operation. For instance, for the join or disjunction, we have in Table 1.2:

π σ π ∨ σ
Tπ Tσ T (π ∨ σ)
Tπ Fσ T (π ∨ σ)
Fπ Tσ T (π ∨ σ)
Fπ Fσ F (π ∨ σ)

Table 1.2: Truth table for the join.

Hence to define the partition join, we would label the link uTσ,Fπu′ with T (π ∨ σ) and so forth for
all the links. Then we delete all the ‘truth’links labeled with T (π ∨ σ) leaving only the ‘false’links
labeled with F (π ∨ σ). The connected components of that ‘false-graph’Gph (π ∨ σ) is the partition
on U defined by the truth-table for the join. For the meet, we use the truth-table for the meet or
conjunction, and for any other binary or n-ary truth-functional operation, we use the truth-table for
that operation to define the corresponding operation on partitions.

To see that this graph-theoretic approach gives the same operation as the set-of-blocks or ditset
definitions, we note that a link u − u′ is labeled F (π ∨ σ) if and only if it was labeled Fπ and Fσ
which means that (u, u′) ∈ indit (π) ∩ indit (σ) = indit (π ∨ σ) so the definitions are equivalent.

For the meet or conjunction operation, the truth table is Table 1.3:
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π σ π ∧ σ
Tπ Tσ T (π ∧ σ)
Tπ Fσ F (π ∧ σ)
Fπ Tσ F (π ∧ σ)
Fπ Fσ F (π ∧ σ)

Table 1.3: Truth table for the meet.

so the links with an F (π ∧ σ) assigned to them are the ones where (u, u′) is an indit of π or σ or
both, i.e., (u, u′) ∈ indit (π) ∪ indit (σ). Now dit (π ∧ σ) = int [dit (π) ∩ dit (σ)] so indit (π ∧ σ) =
[indit (π) ∪ indit (σ)], i.e., indit (π ∧ σ) is the smallest equivalence relation containing indit (π) ∪
indit (σ). But we have just shown that the Fπ∧σ-links are the indits of indit (π) ∪ indit (σ). The
partition determined by that graph is its connected components and those components are the same
if we take the transitive closure of the graph (i.e., put in a link u−u′ if there is any path of links con-
necting u to u′), and that transitive closure just corresponds to the closure [indit (π) ∪ indit (σ)] =
indit (π ∧ σ). Hence the graph-theoretic definition of the partition meet agrees with the ditset defi-
nition.

For examples consider the two partitions π = {{a, b} , {c, d}} and σ = {{a} , {b, c, d}} on U =
{a, b, c, d}. The complete graph with the labeled links prior to considering any particular logical
operation is given in Figure 1.2.

Figure 1.2: Graph with links labeled by truth-values from π and σ.

If we use the truth table for the join, than only the d−c link has the Fσ, Fπ values for F (π ∨ σ)
so it is the only surviving link when all the true-links are deleted and indicated by the thickened
link in Figure 1.3. Then the connected components for Gph (π ∨ σ) are {a}, {b}, and {c, d} which
are the blocks of π ∨ σ.

Figure 1.3: Connected components of graph with only d− c link are blocks of π ∨ σ.
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If we use the truth table for the conjunction then the thickened links in Figure 1.4 are the false-
links. The two links a − d and a − c are missing in the false-graph Gph (π ∧ σ) but all the vertices
are connected by false-links so there is only one connected component and thus the meet π ∧ σ is
the indiscrete partition 0U .

Figure 1.4: All vertices connected in graph Gph (π ∧ σ) so π ∧ σ is the indiscrete partition.

1.2.4 The complete Boolean subalgebra definitions of join and meet

Oystein Ore [41] noted a one-to-one correspondence between complete Boolean subalgebras of the
powerset Boolean algebra ℘ (U) and partitions on U . Given a partition π on U , the corresponding
complete Boolean subalgebra B (π) is that generated by arbitrary unions of the blocks of π, and
given a complete Boolean subalgebra B of ℘ (U), the atoms or minimal subsets form a partition πB
on U . By this approach, it is the meet that has the easiest definition:

B (π ∧ σ) = B (π) ∩ B (σ)

since the atoms or minimal subsets of that intersection Boolean algebra would be the smallest
subsets that are a union of blocks of π and at the same time a union of blocks of σ. The union of
two subalgebras is not necessarily a subalgebra but it generates one by taking arbitrary unions and
intersections of subsets in the subalgebras. The atoms in that generated complete Boolean subalgebra
are the non-empty intersections B ∩ C for B ∈ π and C ∈ σ so we have:

B (π ∨ σ) = (B (π) ∪ B (σ)).

1.2.5 The adjunctive characterizations of join and meet

The definitions can also be approached using the concepts of category-theoretic logic. Given two
partial orders P and Q, two order-preserving functions F : P → Q and G : Q → P form an
adjunction [2, p. 191] (or Galois connection [4, p. 124]) if for any p ∈ P and q ∈ Q, the following
equivalence holds:

F (p) ≤Q q iff p ≤P G (q).

Then F is said to be the left adjoint and G the right adjoint in the adjunction. Taking q = F (p) ,the
element GF (p) ∈ P , called the unit, is the least element G (q) such that p ≤P G (q). And taking
p = G (q), the element FG (q) ∈ Q, called the counit, is the greatest element F (p) such that
F (p) ≤Q q.

For instance, take P = Π (U) ordered by refinement and Q = ℘ (U × U) ordered by inclusion
with F : P → Q as π 7−→ dit(π) and G : Q → P as V 7−→ λ (int (V )) where λ (int (V )) reads "the
partition whose ditset is int (V )." Then we have the adjunction:
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dit (π) ⊆ V iff π - λ (int (V )).

For π ∈ Π (U), the unit is λ (int (dit (π))) = π which is trivially the least λ (int (V )) such that
π - λ (int (V )). For V ∈ ℘ (U × U), the counit is dit (λ (int (V ))) = int (V ) which is the great ditset
such that dit (π) ⊆ V . A subset V ∈ ℘ (U × U) is said to be open if the over-and-back operation of
taking V to the counit dit (λ (int (V ))) = int (V ) is the identity, i.e., V = int (V ). The over-and-back
operation of taking each π to its unit λ (int (dit (π))) is already the identity so the maps F and
G establish an isomorphism [4, p. 124, Theorem 20] between the partitions in Π (U) and the open
subsets in ℘ (U × U) which we previously established:

Π (U) ∼= O (U × U).

It might also be noted that the adjunction works just as well if we cut down the partial orders to
the corresponding upper segments, [π,1U ] and [dit (π) , U × U ].

The powerset ℘ (U) is a category with the maps being the inclusion maps. There is then a
diagonal functor ∆ : ℘ (U) → ℘ (U) × ℘ (U) from the powerset into the product category of the
powerset times itself where S 7−→ (S, S). The diagonal functor has a left adjoint ∪ : ℘ (U)×℘ (U)→
℘ (U) that takes (S, T ) 7−→ S ∪ T . That adjunction is equivalent to the statement:

S ∪ T ⊆W iff (S, T ) ⊆ (W,W ).

Dually, the diagonal functor has a right adjoint that defines the intersection or meet: ∩ : ℘ (U)×
℘ (U)→ ℘ (U) where (S, T ) 7−→ S ∩ T . That adjunction is equivalent to the statement:

(W,W ) ⊆ (S, T ) iffW ⊆ S ∩ T .

That is how the join and meet of sets can be defined using adjunctions [39, p. 96].
To apply this approach to partitions, we mimic it with the set of partitions Π (U) on U partially

ordered by refinement (or, equivalently, the set of ditsets O (U × U) partially ordered by inclusion)
replacing ℘ (U). Then the left adjoint to the diagonal functor τ 7−→ (τ, τ) would satisfy:

π ∨ σ - τ iff (π, σ) - (τ, τ)

which simply states that the join π ∨ σ is the least upper bound of π and σ in Π (U) and that
characterizes the join. Similarly, the right adjoint to the diagonal functor would satisfy:

(τ, τ) - (π, σ) iff τ - π ∧ σ

which simply states that the meet π ∧ σ is the greatest lower bound of π and σ in Π (U) and that
characterizes the meet. The adjunctive approach thus characterizes the join and meet of partitions
respectively as the least upper bound and greatest lower bound—which we have shown to exist by
the previous methods.

1.3 The implication operation on partitions

1.3.1 Analogies with Heyting and bi-Heyting algebras

In the development of the logic of partitions, it is important to see analogies with a Heyting algebra
(or intuitionistic propositional calculus) where the principal model is the algebra of open subsets of
a topological space. We are treating the logic of partitions entirely from the semantic point of view,
i.e., reasoning about partitions, not using a set of axioms. In that sense, the analogy is between the
logic of open subsets of a topological space (the standard semantic model of a Heyting algebra) and
the logic of partitions on a set. There are at best "analogies" since Heyting algebras are distributive
lattices while the lattice of partitions is not distributive. Heyting algebras have a negation (i.e., the
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largest open subset disjoint from a given subset) and an implication (where the negation ¬σ is the
"implication to zero σ ⇒ 0). The set of negated elements in a Heyting algebra (i.e., the regular open
subsets in the standard topological semantic interpretation) form a Boolean algebra.

In the logic of partitions, there is also a negation and an implication where the negation is the
implication to zero σ ⇒ 0U . In both cases, the negation can be relativized to a fixed element π (a
given open subset or partition) where the π-negation is just the implication with a fixed consequent
π¬σ = σ ⇒ π. In the logic of partitions as in the logic of open subsets, the negated and, in general,
π-negated elements form a Boolean algebra.

There is a formal axiomatic dual to the Heyting algebra axioms and it is the set of axioms for a
co-Heyting algebra where the standard semantic model is the logic of closed subsets (complements
of open subsets) of a topological space. The partitions on a set Π (U) can be represented as the
open subsets or ditsets of U × U when taken as a closure space with the RST-closure operation.
The complements of the open subsets are the closed subsets or inditsets of U × U which are the
equivalence relations on U . Hence there is a dual logic of equivalence relations analogous to the
logic of closed subsets of a topological space. The dual to the implication operation on partitions
or partition relations (ditsets) is the difference operation on equivalence relations. The negation is
the "difference from 1" or 1 − σ and the relativized version is the "difference from π” or π − σ.
That dual logic of equivalence relations will be outlined here but it contains nothing really new
since it is just the logic of partitions looked at from a complementary point of view. Moreover, to
compare formulas between the logic of subsets (all subsets in the Boolean case and open subsets in
the intuitionistic case) and the logic of partitions, we need to stick to the approach initiated above
(e.g., the logic of partition relations or ditsets), not the logic of equivalence relations. For instance,
the standard formula for modus ponens, (σ ∧ (σ ⇒ π)) ⇒ π is π − (σ ∨ (π − σ)) in the dual logic
of equivalence relations. Hence our main development is along the lines of partitions represented by
partition relations or ditsets—which is analogous to Heyting algebras or the logic of open subsets of
a topological space.

Since co-Heyting algebras are axiomatized, one can consider other co-Heyting algebras that just
the algebra of closed subsets ([34], [35]). Moreover, one can consider a bi-Heyting algebra or Heyting-
Brouwer (HB) logic which has both implication and difference (or co-implication) operations ([43];
[52]). We will show that there is also a difference or co-implication operation on partitions—a dual
structure on Π (U)—that is not just the complementary view in terms of equivalence relations. For
instance, the operations on equivalence relations do not define any new operations on partitions
since they are the same operations looked at in complementary terms. But the dual operations of
co-negation and co-implication do define new operations on partitions.The logic of partitions has
much of the rich dual structure of a Heyting-Brouwer logic or bi-Heyting algebra except that it is
more intricate and complex since partition logic is not distributive, and it is based on an arbitrary
unstructured universe set U (with no topologies or orderings).

1.3.2 The set-of-blocks definition of implication on partitions

In the Boolean algebra ℘ (U), for subsets S, T ⊆ U , the implication or conditional operation on
subsets is defined as:

S ⊃ T = Sc ∪ T .

One key property is that when the implication equals the top U of the Boolean algebra, then the
partial order holds between the subsets:

S ⊃ T = U iff S ⊆ T .

Another way to approach the set implication S ⊃ T is to first consider indicator or characteristic
function that indicates the degree to which S is not contained in T . That indicator function indicates
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1 on u ∈ U if u is an element of S that is not contained in T and indicates 0 otherwise. That function
is just χS−T , the indicator function for S − T = S ∩ T c. Then the indicator function for the extent
to which S is contained in T would be its negation:

1− χS−T = χ(S−T )c = χSc∪T = χS⊃T .

Thus the set implication S ⊃ T is a subset indicating the extent to which S is contained in T so
when it is all true, i.e., χS⊃T = χU , then and only then S ⊆ T .

That means, in the partition case, that if the implication partition σ ⇒ π was equal to the top,
the discrete partition 1U , then and only then would σ - π hold. That refinement relation holds
if and only if for every B ∈ π, there is a C ∈ σ such that B ⊆ C. One candidate definition that
precisely satisfies that criterion is to take σ ⇒ π to be the same as π except that when there is a
C ∈ σ such that B ⊆ C, then B is replaced by its singletons {u} for u ∈ B. Thus if B is ‘discretized’
by being replaced by its singletons then it becomes the local version of the discrete partition 1B . If
B is not contained in any block of σ, then it remains as B which is the local version of the indiscrete
partition 0B . Hence in this definition of σ ⇒ π, the implication serves as a characteristic or indicator
function with values or blocks 1B or 0B according to whether or not each block B ∈ π is or is not
contained in a block of σ. Hence this implication σ ⇒ π indicates the degree to which π refines σ so
when it is all true, then refinement holds:

σ ⇒ π = 1U iff σ - π.

If f, g : U → R are random variables on U , and π =
{
f−1 (r)

}
r∈f(U)

and σ =
{
g−1 (r)

}
r∈g(U)

are the inverse-image or coimage (or kernel) partitions determined by f and g, then when σ - π, the
random variable f is said to be a suffi cient statistic for the random variable g, i.e., in an experiment,
if the value of f is known, then that is suffi cient to know the value of g [33, p, 31 where the opposite
partial order is used.]. The implication σ ⇒ π is thus a partition that indicates the extent to which
f is suffi cient for g, so when σ ⇒ π = 1U , then f is suffi cient for g.

No special attention need be paid to the complete Boolean subalgebra treatment of the parti-
tion implication since it is a trivial variation of the set-of-blocks definition. The complete Boolean
subalgebra B (σ ⇒ π) is generated from B (π) when each atom B ∈ π is replaced by its discretization
whenever there is a C ∈ σ such that B ⊆ C.

1.3.3 The ditset definition of the partition implication

The ditset definition of the partition meet suggests a general way to define other logical operations
on partitions: apply the set definition from subset logic to the ditsets (e.g., for the meet, take the
intersection dit (π)∩dit (σ)) and if the result is not a ditset, then take its interior as the ditset of the
partition operation (e.g., dit(π ∧ σ) = int [dit (π) ∩ dit (σ)]). Applying that method to the problem
of defining the partition implication yields the definition:

dit (σ ⇒ π) = int [dit (σ)
c ∪ dit (π)].

At first that ditset definition looks totally different from the set-of-blocks definition; it would threaten
the naturalness of partition logic if there were several plausible definitions of the key operation of
implication. But the definitions are the same. Let σ ∗⇒ π temporarily stand for the set-of-blocks
definition.

Proposition 1 σ ⇒ π = σ
∗⇒ π.

Proof: By the two definitions, dit (π) ⊆ dit (σ ⇒ π) = int [dit (σ)
c ∪ dit (π)] and dit (π) ⊆ dit

(
σ
∗⇒ π

)
with the reverse inclusions holding between the indit sets. We prove the proposition by showing that

dit
(
σ
∗⇒ π

)
⊆ dit (σ ⇒ π) and that indit

(
σ
∗⇒ π

)
⊆ indit (σ ⇒ π) where:
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indit (σ ⇒ π) = dit (σ) ∩ dit (π)
c

= (indit (π) ∩ indit (σ)
c
) = (indit (π)− indit (σ)).

Now suppose that (u, u′) ∈ indit
(
σ
∗⇒ π

)
(where u 6= u′) where indit

(
σ
∗⇒ π

)
⊆ indit (π) so

that u, u′ ∈ B for some block B ∈ π. Moreover if B were contained in any block C ∈ σ, then

(u, u′) ∈ dit
(
σ
∗⇒ π

)
= indit

(
σ
∗⇒ π

)c
contrary to assumption so B is not contained in any C ∈ σ.

If u and u′ were in different blocks of σ then (u, u′) 6∈ indit (σ) so that (u, u′) would not be subtracted
off in the formation of indit (σ ⇒ π) = (indit (π)− indit (σ)) and thus would be in indit (σ ⇒ π)
which was to be shown. Now suppose that u and u′ are in the same block C ∈ σ. Thus (u, u′)
was subtracted off in indit (π) − indit (σ) and we need to show that it is restored in the closure
(indit (π)− indit (σ)). Since u, u′ ∈ B ∩ C but B is not contained in any one block of σ, there is
another σ-block C ′ such that B ∩ C ′ 6= ∅. Let u′′ ∈ B ∩ C ′. Then (u, u′′) and (u′, u′′) are not in
indit (σ) since u, u′ ∈ C and u′′ ∈ C ′ but those two pairs are in indit (π) since u, u′, u′′ ∈ B. Hence the
pairs (u, u′′) , (u′, u′′) ∈ indit (π)− indit (σ) = indit (π)∩dit (σ) which implies that (u, u′) must be in

the closure indit (σ ⇒ π) = (indit (π)− indit (σ)). That establishes indit
(
σ
∗⇒ π

)
⊆ indit (σ ⇒ π).

To prove the converse in the form dit
(
σ
∗⇒ π

)
⊆ dit (σ ⇒ π), assume (u, u′) ∈ dit

(
σ
∗⇒ π

)
.

Since dit (π) ⊆ dit (σ ⇒ π), we would be finished if (u, u′) ∈ dit (π). Hence assume (u, u′) 6∈ dit (π)

so that u, u′ ∈ B for some π-block B and (u, u′) is one of the new dits added when σ ∗⇒ π is formed
from π in the set-of-blocks definition. Thus B ⊆ C for some σ-block C so that (u, u′) ∈ indit (σ)
and (u, u′) is not in the difference indit (π)− indit (σ) = indit (π) ∩ dit (σ). It remains to show that
it is not in the closure indit (σ ⇒ π) = (indit (π)− indit (σ)). To be in the closure, there would
have to be some sequence u = u1, u2, ..., un = u′ such that (ui, ui+1) ∈ indit (π) − indit (σ) =
indit (π) ∩ dit (σ) for i = 1, ..., n− 1. But since all the (ui, ui+1) ∈ indit (π) and u = u1 ∈ B, all the
u = u1, u2, ..., un = u′ ∈ B and B ⊆ C so all the pairs (ui, ui+1) ∈ indit (σ) which contradicts those
pairs being in the difference indit (π)−indit (σ) = indit (π)∩dit (σ). Hence (u, u′) is not in the closure
indit (σ ⇒ π) = (indit (π)− indit (σ)) so (u, u′) is in the complement dit (σ ⇒ π) = indit (σ ⇒ π)

c

which completes the proof of the proposition. �
Henceforth, σ ⇒ π will refer to the partition implication defined either by the ditset definition

or the ser-of-blocks definition.

1.3.4 The graph-theoretic definition of the partition implication

To define the partition implication using the graph-theoretic method, we simply use the truth table
for the implication (or conditional), Table 1.4, to label the links in K (U) so that we may then
eliminate the true-links to obtain Gph(σ ⇒ π).

σ π σ ⇒ π

Tσ Tπ T (σ ⇒ π)
Tσ Fπ F (σ ⇒ π)
Fσ Tπ T (σ ⇒ π)
Fσ Fπ T (σ ⇒ π)

Table 1.4: Implication truth table for the implication.

Then the connected components of Gph (σ ⇒ π) give the partition implication σ ⇒ π.
In the previous example of σ = {{a} , {b, c, d}} and π = {{a, b} , {c, d}}, the only link of K (U)

labeled with Tσ and Fπ was a− b so it is the only F (σ ⇒ π) to provide a link in Gph (σ ⇒ π) and
thus the connected components of Gph (σ ⇒ π) are {a, b}, {c}, and {d} so those are the blocks off
σ ⇒ π as in Figure 1.5.
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Figure 1.5: Graph-theoretic definition of σ ⇒ π.

Proposition 2 Graph-theoretic definition = Set-of-blocks definition of σ ⇒ π.

Proof: If (u, u′) ∈ dit (π), then Tπ is assigned to that link in K (U) so u and u′ are not connected
in Gph (σ ⇒ π). And if (u, u′) ∈ indit (π) but also (u, u′) ∈ indit (σ), then T (σ ⇒ π) is assigned
to the link in K (U) so again there is no connection between u and u′ in Gph (σ ⇒ π). There is
a link u − u′ in Gph (σ ⇒ π) in and only in the following situation where (u, u′) ∈ indit (π) and
(u, u′) ∈ dit (σ)—which is exactly the situation when B is not contained in any block C of σ. Then
for any other element u′′ ∈ B so that (u, u′′) and (u′, u′′) ∈ indit (π), u′′has three possible locations
relative to σ, in C, in C ′, or outside both as pictured in Figure 1.6.

Figure 1.6: Possible locations for u′′.

We must have either (u, u′′) ∈ dit (σ) or (u′, u′′) ∈ dit (σ) so u′′ is linked in Gph (σ ⇒ π) to either
u or to u′, i.e., we have either uTσ,Fπu′′or u′Tσ,Fπu′′. Thus all the elements of B are in the same
connected component of the graph Gph (σ ⇒ π) whenever B is not contained in any block of σ.

If, on the other hand, B is contained in some block C of σ, then any u ∈ B cannot be linked
to any other u′ since that requires Fπ assigned to the link u− u′ which requires (u, u′) ∈ indit (π),
i.e., u, u′ both in B. And since B ⊆ C, they both belong to C so Fσ and thus T (σ ⇒ π) is also
assigned to that link and hence that link is eliminated in Gph (σ ⇒ π). Thus when B is contained in
a block C ∈ σ, then any point u ∈ B is a disconnected component to itself in Gph (σ ⇒ π) so B is
discretized in the graph-theoretic construction of σ ⇒ π. Thus the graph-theoretic and set-of-blocks
definitions of the partition implication are equivalent. �

1.3.5 The adjunctive approach to the partition implication

In the Boolean algebra of subsets, there is the "meet-with-S" functor ℘ (U)→ ℘ (U) where W 7−→
W ∩ S and the "implication-from-S" functor ℘ (U) → ℘ (U) where T 7−→ S ⊃ T which form an
adjunction:

W ∩ S ⊆ T iffW ⊆ S ⊃ T
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which characterizes S ⊃ T as the largest subset such that modus ponens ((S ⊃ T ) ∩ S) ⊆ T .
The analogous approach to the partition implication would be to find similar adjoints so that:

τ ∧ σ - π iff τ - σ ⇒ π.

But this statement is false for the partition implication as defined above. The simplest non-trivial
set of partitions is that on the three element set U = {a, b, c} where we may take τ = {{a, b} , {c}},
σ = {{a, c} , {b}}, and π = {{a} , {b, c}}. Then τ ∧ σ = 0U so the left-hand side 0U � π is true. But
σ ⇒ π = π (since no non-singleton block of π is contained in a block of σ), so the right-hand side is
τ - π which is false.

There is another way to see that the adjunction does not exist for partitions. In the Boolean
algebra of subsets (or the Heyting algebra of open subsets of a topological space), that adjunction
implies the distributivity of the algebra [8, p. 6]. But partition lattices Π (U) are the standard exam-
ples of non-distributive lattices. In fact, it was an embarrassing moment for American mathematics
in the nineteenth century when the mathematican-philosopher Charles Saunders Peirce claimed [42]
to have proved the distributivity of all lattices but omitted the ‘proof’as being too tedious. Eu-
ropeans (e.g., Richard Dedekind and Ernest Schröder) soon besieged him with the example of the
simplest non-trivial lattice on a three-element set shown in Figure 1.7.

Figure 1.7: Simplest non-distributive partition lattice on U = {a, b, c}.

Using the same τ , σ, and π, π∨σ = 1U so τ∧(π ∨ σ) = τ . But τ∧π = τ∧σ = 0U so (τ ∧ π)∨(τ ∧ σ) =
0U .

But there is another approach via adjunctions. Starting with the set U ×U , for any S ⊆ U ×U ,
there is the usual adjunction for the Boolean conditional ℘ (U × U)� ℘ (U × U):

T ∩ S ⊆ P iff T ⊆ S ⊃ P

for any subsets T, P ∈ ℘ (U × U). Moreover, the dit-set representation Π (U) → ℘ (U × U) where
τ 7−→ dit (τ) has a right adjoint where P ∈ ℘ (U × U) is taken to the partition G (P ) whose dit set
is int (P ):

dit (τ) ⊆ P iff τ - G (P ).

Composing the two right adjoints ℘ (U × U) → ℘ (U × U) → Π(U) gives a functor taking
P ∈ ℘ (U × U) to GS (P ) which is the partition whose dit set is int (S ⊃ P ) = int (Sc ∪ P ). Its left
adjoint is obtained by composing the two left adjoints Π(U)→ ℘ (U × U)→ ℘ (U × U) to obtain a
functor taking a partition τ to FS (τ) = dit (τ) ∩ S:

FS (τ) = dit (τ) ∩ S ⊆ P iff dit (τ) ⊆ S ⊃ P iff τ - GS (P ) .3

3Thanks to Toby Kenney for suggesting this simplified presentation of this adjunction.

16



Specializing S = dit (σ) and P = dit (π) gives Gdit(σ) (dit (π)) as the partition whose dit-
set is int (dit (σ)

c ∪ dit (π)) which we know from above is the partition implication σ ⇒ π, i.e.,
Gdit(σ) (dit (π)) = σ ⇒ π. Using these restrictions, the adjunction gives the iff statement character-
izing the partition implication:

dit (τ) ∩ dit (σ) ⊆ dit (π) iff τ � σ ⇒ π.
Characterization of σ ⇒ π.

Taking τ = σ ⇒ π, we see that σ ⇒ π is the most refined partition such that modus ponens holds.
That is, the partition implication σ ⇒ π is the most refined partition τ such that dit (τ)∩ dit (σ) ⊆
dit (π) and thus that (σ ⇒ π) ∧ σ - π since int [dit (σ ⇒ π) ∩ dit (σ)] = dit ((σ ⇒ π) ∧ σ). And
(σ ⇒ π) ∧ σ - π is equivalent to [(σ ⇒ π) ∧ σ]⇒ π = 1U .

There are some other ways to state this characterization of the partition implication. Since
arbitrary unions of ditsets are ditsets, we have:

dit (σ ⇒ π) =
⋃
{dit (τ) : dit (τ) ∩ dit (σ) ⊆ dit (π)}.

Or taking the join in the complete lattice Π (U),

σ ⇒ π =
∨
{τ : dit (τ) ∩ dit (σ) ⊆ dit (π)}.

Henceforth, the partition lattice Π (U) equipped with the implication operation will be referred
to as the partition algebra Π (U).

1.4 Negation and other operations on partitions

1.4.1 Negation in partition logic

From the Boolean logic of subsets and the intuitionistic logic of open subsets, we have the suggestion
to define the negation of a partition ¬σ as the implication to zero, i.e., σ ⇒ 0U . But in partition
logic, this is immediately seen (using the set-of-blocks definition) to be rather trivial since for any
σ 6= 0U , σ ⇒ 0U = 0U and for σ = 0U , 0U ⇒ 0U = 1U . In intuitionistic logic, the negation of an
open subset is the largest open subset disjoint from the given open set. In the ditset representation,
that would mean the ditset of the negation of a partition is the largest ditset disjoint from a given
ditset. But in the partition case, for any σ 6= 0U , i.e., for any non-empty ditset dit (σ), there is
no non-empty ditset disjoint from it. That means that any two non-empty ditsets always have a
non-empty intersection, Thus for π, σ 6= 0U , there is always a pair {u, u′} that are in different blocks
of both π and σ. This may also be stated as: if dit (π)∩dit (σ) = ∅, then dit (π) = ∅ or dit (σ) = ∅. Or
in terms of inditsets or equivalence relations: if indit (π)∪ indit (σ) = U ×U , then indit (π) = U ×U
or indit (σ) = U × U .

That is an interesting result in its own right, and in view of the connections between partitions
and graphs, it is a known result in graph theory. If σ 6= 0U , then the graph on U with the links
indit (σ) is disconnected. The largest graph on U with links disjoint from that indit (σ)-graph is the
complementary graph whose links are given by dit(σ). The graph theorem is that the complementary
graph of a disconnected graph is connected [51, p. 30], so with each vertex connected by links to
every other vertex, the partition corresponding to a connected graph is 0U , i.e., ¬σ = σ ⇒ 0U = 0U .

Theorem 1 (Common dits) For any partitions π 6= 0U 6= σ, dit (π) ∩ dit (π) 6= ∅.

Proof : Since π is not the blob 0U , consider two elements u and u′ distinguished by π but identified
by σ; otherwise (u, u′) ∈ dit (π)∩dit (σ) and we are finished. Since σ is also not the blob, there must
be a third element u′′ not in the same block of σ as u and u′.
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Figure 1.8: (u′, u′′) as a common dit

But since u and u′ are in different blocks of π, the third element u′′ must be distinguished from
one or the other or both in π, e.g., distinguished from u′ in both partitions as in Figure 1.8. Hence
(u, u′′) or (u′, u′′) must be distinguished by both partitions and thus must be in dit (π) ∩ dit (σ). �

One implication is that if σ 6= 0U , then dit (σ) = U ×U , i.e., the RST-closure of any non-empty
ditset is U × U , since

(
dit (σ)

)c
is the ditset of the largest ditset disjoint from dit (σ) but that is

dit (0U ) = ∅.
In spite of some similarities between partition logic and intuitionistic propositional logic, e.g., as

modeled by open subsets of a topological space, there are some subtle differences. Both are lattices. In
a lattice, a pseudo-complement [6, p.103] of an element σ (if it exists) is the maximal element σ∗ such
that σ∧σ∗ = 0. If every element has a pseudo-complement, then the lattice is pseudo-complemented.
In the lattice of open subsets of a topological space, the pseudo-complement of an open subset σ is the
largest open subset disjoint from it, i.e., the interior of the complement, and that pseudo-complement
might be denoted σ ⇒ 0. In the lattice of partitions Π (U), for any partition σ, there is a largest ditset
disjoint from dit (σ) and it is the ditset for the partition σ ⇒ 0U . But this partition is not a pseudo-
complement and Π (U) is not pseudo-complemented. This is particularly striking since σ ⇒ 0U can
be defined as having the largest ditset dit (τ) such that dit (σ)∩dit (τ) = ∅. But that is not the same
as the maximal partition τ such that σ ∧ τ = 0U (recall that dit (σ ∧ τ) = int [dit (σ) ∩ dit (τ)]).

Example: To show that σ ⇒ 0U is not the pseudo-complement of σ, let τ = {{a, b} , {c}} and
σ = {{a, c} , {b}} as in the previous example on U = {a, b, c}. Then τ ∧ σ = 0U and (τ ∧ σ) ∧
((τ ∧ σ)⇒ 0U ) = 0U . If σ ⇒ 0U was the pseudo-complement of σ, then it is the largest (most
refined) partition π to satisfy π ∧ σ = 0U so

τ ∧ ((τ ∧ σ)⇒ 0U )
?

- σ ⇒ 0U .

But that refinement is false since (τ ∧ σ) ⇒ 0U = 0U ⇒ 0U = 1U and τ ∧ 1U = τ so the LHS
is τ 6= 0U while the RHS is 0U . The negation σ ⇒ 0U has the largest ditset disjoint from dit (σ)
and σ ∧ (σ ⇒ 0U ) = 0U . We also have τ ∧ ((τ ∧ σ)⇒ 0U ) ∧ σ = 0U , but the ditsets are not even
disjoint since dit (τ ∧ ((τ ∧ σ)⇒ 0U )) = dit (τ) = {(a, c) , (b, c) , ...} and dit (σ) = {(a, b) , (c, b), ...}
so dit (τ ∧ ((τ ∧ σ)⇒ 0U )) ∩ dit (σ) = {(b, c) , (c, b)}.

1.4.2 Relative negation in partition logic

In intuitionistic propositional logic (or in a Heyting algebra), the negated elements, called the regular
elements (since they correspond to regular open sets, i.e., the interiors of closed sets, in the topological
interpretation), form a Boolean algebra. In a partition algebra, the negated elements σ ⇒ 0U also
form a Boolean algebra but is the trivial two-element one consisting of 0U and 1U . But the general
implication σ ⇒ π could be seen as an indicator function with values 1B and 0B indicating whether
each block B ∈ π is a subset of a block of σ or not. This suggests a non-trivial notion of negation
where the indicator function’s values are reversed, and that is given by the partition (σ ⇒ π)⇒ π.
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Hence we consider the implication σ ⇒ π as the relative negation of σ by π and denote this π-
negation by

π¬σ = σ ⇒ π. Then the formula (σ ⇒ π) ⇒ π is just the double π-negation
π¬π¬σ.The

triple π-negation reverses the indicator values again to return to the original single π-negation so
that:

π¬π¬π¬σ =
π¬σ.

A π-negated partition is said to be π-regular. All the π-regular partitions are in the upper
segment [π,1U ] = {τ : π - τ}, which is the lattice of partitions between π and 1U (including the
endpoints). Let the set of π-regular partitions be denoted B [π,1U ] ⊆ Π (U). We have just seen
that the π-negation of a π-regular partition as like the Boolean negation in B [π,1U ] by considering
each π-regular partition as an indicator function. Do the join and meet operations in Π (U) act like
the Boolean join and meet in B [π,1U ]? For any other partitions σ, τ ∈ Π (U), the partition join
σ ⇒ π ∨ τ ⇒ π of two π-regular partition can be analyzed using a truth table of its indicator values
as in Table 1.51.

σ ⇒ π τ ⇒ π (σ ⇒ π) ∨ (τ ⇒ π)

1B 1B 1B
1B 0B 1B
0B 1B 1B
0B 0B 0B

Table 1.5: Join operation on π-regular partitions

The blocks of the join are the non-empty intersections of the blocks of the two partitions. In any of
the cases where a block B was discretized to 1B , the singleton blocks {u} for u ∈ B would always
yield the same singleton blocks when intersected with any other blocks so all the cases where a block
B was atomized to 1B , the join has that same value as indicated in Table 1.5 (the first three cases).
If B was not atomized in either π-regular partition, then B = 0B would be the intersection in the
join. But is (σ ⇒ π)∨ (τ ⇒ π) a π-regular partition in B [π,1U ]? Since (σ ⇒ π)∨ (τ ⇒ π) has values
like a π-regular partition, it would equal its double π-negation which is a π-regular partition.

The same exercise can be carried out for the meet of two π-regular partitions.

σ ⇒ π τ ⇒ π (σ ⇒ π) ∧ (τ ⇒ π)

1B 1B 1B
1B 0B 0B
0B 1B 0B
0B 0B 0B

Table 1.6: Meet operation on π-regular partitions.

Whenever one of the values for a π-regular partition σ ⇒ π or τ ⇒ π is 0B in the first two columns of
Table 1.6, then it absorbs the other B-value 1B or 0B , so the result for that row is also 0B (the last
three rows). In the remaining case of two 1B values, the singletons only intersect with themselves so
that value is 1B in the meet. Since the meet has only the values of 0B and 1B , its double π-negation
has the same values and is a π-regular partition.

The exercise might also be carried out for the implication of two π-regular partitions as indicated
in Table 1.7.

σ ⇒ π τ ⇒ π (σ ⇒ π)⇒ (τ ⇒ π)

1B 1B 1B
1B 0B 0B
0B 1B 1B
0B 0B 1B

Table 1.7: Implication operation on π-regular partitions.
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For any row where the consequent τ ⇒ π has the value 1B , it is already atomized so that value
for the overall implication is also 1B . When both the values are 0B (i.e., the last row), then since
B ⊆ B, the overall implication has the value 1B in that case. In the remaining case with antecedent
1B and consequent 0B , B is not contained in its atomized version, so it remains B and thus that row
has the value 0B . And it is equivalent to its double π-negation so that implication is also π-regular.

In this manner, we see that all the partition operations on the π-regular elements are the same
as the Boolean operations on the indicator values 1B and 0B for B ∈ π, so B [π,1U ] is a Boolean
algebra under the partition operations and will be called the Boolean core for π. The Boolean core
B [π,1U ] is not technically a subalgebra since the Boolean core B [π,1U ] ⊆ [π,1U ] = {τ : π - τ} is
contained in the upper segment [π,1U ] of Π (U) determined by π and the bottom of the Boolean
core B [π,1U ] is π. It is customary to rule out the degenerate Boolean algebra 1 where the top equals
the bottom so that means π 6= 1U for the Boolean algebras B [π,1U ].

If the partition π has any singleton blocks B = {u} for u ∈ U , then they are always included in
a block of any other partition. Moreover they are the same as their atomized version so 1B = 0B
when B is a singleton. Thus the construction of the Boolean core B [π,1U ] ignores singleton blocks;
they are like a useless appendage onto any π-regular partition and do not change under negation.
Let πns stand for π with the singleton blocks removed. Then the π-regular partitions ϕ ∈ B [πns,1U ]
are characterized by the characteristic or indicator function of their non-singleton blocks with values
1B or 0B , which could be viewed as an normal characteristic function χ (ϕ) : πns → 2. The Boolean
core B [πns,1U ] is isomorphic to the powerset Boolean algebra ℘ (πns) under the correspondence:
ϕ←→ χ (ϕ) : πns → 2.

We now have two Boolean algebras associated with each partition π ∈ Π (U) so we should expect
a close relationship. In the complete Boolean subalgebra approach to defining the lattice operations,
B (π) was the Boolean subalgebra of ℘ (U) generated by the unions of the blocks of π, singleton or
not, so it is isomorphic to the powerset Boolean algebra ℘ (π). The difference between B (π) and
B [πns,1U ] is solely due to the different treatment of the singletons since 0B = 1B for singleton
blocks B. There are two versions of an arbitrary union of π-blocks in B (π), namely with or without
a singleton block. Hence if we multiply B [πns,1U ] by the two-element Boolean algebra 2 for every
singleton block in π, then we obtain B (π):

B (π) ∼= B [πns,1U ]×
∏
{u}∈π2.

1.4.3 The Sheffer stroke, not-and, or nand operation on partitions

In addition to the lattice operations and implication, we will analyze the Sheffer stroke, not-and, or
nand operation denoted π|σ. The ditset definition would be:

dit (π|σ) = int [(dit (π) ∩ dit (σ))
c
] = int [indit (π) ∪ indit (σ)]

so that:

indit (π|σ) = [dit (π) ∩ dit (σ)].

In the graph-theoretic definition, the links in K (U) marked with F (π|σ) would be those with
Tπ and Tσ as indicated in the truth-table Table 1.8 for the nand. After deleting all the links marked
with Fπ or Fσ to obtain Gph (π|σ), the connected components would be the partition π|σ.

π σ π|σ
Tπ Tσ F (π|σ)
Tπ Fσ T (π|σ)
Fπ Tσ T (π|σ)
Fπ Fσ T (π|σ)

Table 1.8: Truth-table for the partition nand π|σ.
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For the set-of-blocks definition, each u ∈ U is contained in some block B ∩C of π ∨ σ and each
different u′ is contained in a block B′ ∩ C ′. If B 6= B′ and C 6= C ′, then (u, u′) is a dit of both π
and σ so:

(u, u′) ∈ (B ∩ C)× (B′ ∩ C ′) ⊆ dit (π) ∩ dit (σ) = (indit (π) ∪ indit (σ))
c.

Two vertices are connected in Gph (π|σ) if and only if they are in the closure dit (π) ∩ dit (σ) and
thus they are a distinction if and only if they are in the complement of the closure which is the
interior: int [indit (σ) ∪ indit (τ)]. Thus the graph-theoretic and ditset definitions of π|σ agree. To
obtain the set-of-blocks definition, note that when u and u′ are linked in Gph (π|σ) because B 6= B′

and C 6= C ′, then all the elements of B ∩C and B′ ∩C ′ are in the same block of the nand π|σ. But
for any non-empty B∩C, if there is no other block B′∩C ′ of the join with B 6= B′ and C 6= C ′, then
the elements of B ∩ C would not even be connected with each other so they would be singletons in
the nand. Hence for the set-of-blocks definition of the nand π|σ, the blocks of the nand partition are
formed by taking the unions of any join blocks B∩C and B′∩C ′ which differ in both "components"
but by taking as singletons the elements of any B ∩ C which does not differ from any other join
block in both components.

Example: Let π = {{a, b} , {c, d, e}} and σ = {{a, b, c} , {d, e}}. In Figure 1.9, all the arcs in
the complete graph K (U) on five vertices are labeled according to the status of the two endpoints
in the thickened lines. In the graph Gph (π|σ) with only the thickened links, there are two connected
components giving the blocks of the nand: π|σ = {{a, b, d, e} , {c}}.

Figure 1.9: Graph-theoretic definition of π|σ.

By the set-of-blocks definition, the two blocks of the join {a, b} = {a, b} ∩ {a, b, c} = B ∩ C and
{d, e} = {c, d, e} ∩ {d, e} = B′ ∩ C ′ have both B 6= B′ and C 6= C ′, so all those elements are in one
block {a, b, d, e} of the nand. And {c} = {c, d, e} ∩ {a, b, c} but there are no other blocks in the join
π ∨ σ = {{a, b} , {c} , {d, e}} that differ in both blocks intersected, so {c} is a singleton in the nand.

An atom in the lattice of partitions Π (U) is a partition π so that there is no partition between
it and the blob 0U , i.e., if 0U - ϕ - π, then ϕ = 0U or ϕ = π. The atoms are the partitions with
exactly two blocks.

Example: An interesting special case are atoms where one block is a singleton such as π =
{{u} , U − {u}} and σ = {{u′} , U − {u′}} for u 6= u′. Then the join has only three blocks π ∨ σ =
{{u} , {u′} , U − {u, u′}} where {u} = {u} ∩ (U − {u′}) and {u′} = (U − {u}) ∩ {u′}. Since those
intersections differ in both components, {u, u′} is a block in the nand. But U − {u, u′} = U − {u} ∩
U − {u′} and there are no other non-empty intersections that differ in both blocks intersected so
that block U − {u, u′} is atomized or discretized in the nand, i.e., π|σ = {{u, u′} , {u′′} , ...}. On the
graph-theoretic approach, the only link Fπ|σ in Gph (π|σ) is uTπ,Tσu′ so u and u′ are in the same

21



block and all other u′′ ∈ U are singletons. Thus π|σ is a coatom of Π (U), i.e., a partition so there
is no partition strictly between it and the top 1U .

Example: The universe set U = {Tom, John, Jim} consists of three people and there are
two partitions: α which distinguishes people according to the first letter of their name so that
α = {{Tom} , {John, Jim}}, and ω which distinguishes people according to the last letter of their
name so that ω = {{Tom, Jim} , {John}}. Then the meet α ∧ ω would identify people who are
directly and indirectly identified by the two partitions. Tom and John are not directly identified but
are indirectly identified: Tom ω∼ Jim

α∼ John so that σ ∧ ω = 0U . But since the meet is 0U , the
orthogonal nand of the two partitions could be non-zero, and in fact α|ω = {{Tom, John} , {Jim}}.
Thus the fact that Tom and John are directly distinguished by both the first and last letters of their
names, i.e., TαTω on the link Tom − John, results in them not being distinguished, i.e., Fα|ω. by
the nand partition. In this case, ¬α ∨ ¬ω = 0U and ¬ (α ∧ ω) = 1U .

A number of results about the nand can be obtained using the graph-theoretic characterization.
Truth means distinctions. Hence for any ordered pair (u, u′) ∈ dit (π) ∩ dit (σ), the u − u′ link in
K (U) would be marked Tπ, Tσ and thus Fπ|σ so u and u′ will be in the same block of π|σ. By
the Common-Dits result, any two non-blob partitions have dits in common, so for any π, σ 6= 0U ,
π|σ 6= 1U . Moreover, if π|σ 6= 1U , then for some link in Gph (π|σ) has TπTσ assigned to it so that
the Common-Dits Theorem implies π, σ 6= 0U . And if π or σ is 0U , then there can be no common
dits (since the blob has no distinctions), so for any π:

π|0U = 1U .

That is the partition version of the set relation S|∅ = U since for S, T ⊆ U , S|T = Sc ∪ T c.
In subset logic, negation can be defined in terms of the nand: S|S = Sc = S ⊃ ∅. In partition

logic, for σ = 0U , we have already noted that 0U |0U = 1U = 0U ⇒ 0U . If σ 6= 0U , then for any two
blocks C,C ′ ∈ σ with u ∈ C and u′ ∈ C ′, then the link u − u′ has Tσ, Tσ assigned to it and thus
Fσ|σ so that u and u′ are in the same block of σ|σ. Similarly any other u′′ ∈ C is linked to u′ so u
and u′′ are in the same connected component of Gph (σ|σ). By symmetry, any other u′′′ ∈ C ′ is in
the same connected component, and this is true for any C,C ′ ∈ σ, so we have:

σ|σ = 0U = σ ⇒ 0U = ¬σ.

In subset logic, two subsets are disjoint (or orthogonal) if their meet (intersection) is the bottom
zero element ∅, or equivalently (by the DeMorgan laws) if the union of their complements was the top
element U . But in partition logic, these relationship are more subtle. Two partitions ϕ and ϕ′ on U
are said to be π-orthogonal if

π¬ϕ∨ π¬ϕ′ = 1U . They are orthogonal if ¬ϕ∨¬ϕ′ = 1U . Orthogonality
and π-orthogonality give a partition version of "disjointness."

Lemma 2 ϕ and ϕ′ are orthogonal, i.e., ¬ϕ ∨ ¬ϕ′ = 1U , iff ϕ|ϕ′ = 1U .

Proof: If ¬ϕ∨¬ϕ′ = 1U , then int (indit (ϕ))∪ int (indit (ϕ′)) = dit (1U ) = U2−∆. By the monotonic-
ity of the interior operator, int (indit (ϕ)) ∪ int (indit (ϕ′)) ⊆ int (indit (ϕ) ∪ indit (ϕ′)) = dit (ϕ|ϕ′)
so ϕ|ϕ′ = 1U . Conversely, if ϕ|ϕ′ = 1U , then one of the partitions have to be the blob 0U so ¬ϕ or
¬ϕ′ is 1U and so is the join. �

The contrapositive (negation of each side) of the Lemma is just a restatement of the Common-
dits Theorem since ¬ϕ∨¬ϕ′ 6= 1U just says that neither ϕ nor ϕ′ is the blob 0U and the other side
of the equivalence ϕ|ϕ′ 6= 1U just says that dit (ϕ) ∩ dit (ϕ′) 6= ∅.

Thus orthogonality is also characterized by: ϕ|ϕ′ = 1U . And thus orthogonality means that
if one partition is not 0U , then the other must be 0U . Orthogonality thus immediately implies
ϕ ∧ ϕ′ = 0U but not the reverse. In the previous example, the meet of π = {{u} , U − {u}} and
σ = {{u′} , U − {u′}} is π ∧ σ = 0U and ¬0U = 1U but π|σ 6= 1U ({u, u′} is a block in the nand)
since neither is the blob. Also this means that the negation ¬ (π ∧ σ) is not necessarily the same as
the nand π|σ. Since dit (π ∧ σ) = int [dit (π) ∩ dit (σ)] and dit (π|σ) = int [(dit (π) ∩ dit (σ))

c
], they

cannot have a dit in common, so their nand must be the discrete partition:
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(π ∧ σ) | (π|σ) = 1U
"and" orthogonal to "nand".

The same example shows that ¬π∨¬σ (which is 0U ) is not necessarily the same as π|σ. The formulas
are equivalent in subset logic, but in partition logic, the relationship is:

¬π ∨ ¬σ - π|σ - ¬ (π ∧ σ)

since

int [indit (π)] ∪ int [indit (σ)] ⊆ int [indit (π) ∪ indit (σ)]

⊆ int [indit (π ∧ σ)] = int
[
indit (π) ∪ indit (σ)

]
.

Hence the "strong" DeMorgan law ¬σ ∨ ¬τ = ¬ (σ ∧ τ) does not hold in partition logic. But the
weak DeMorgan law, ¬ (π ∨ σ) = ¬π ∧ ¬σ, does hold (since if π = 0U = σ, then both sides are 1U ,
and if one is not 0U , then both sides are 0U ).

Since the three formulas ¬π ∨ ¬σ, π|σ, and ¬ (π ∧ σ) are classically equivalent, i.e., in subset
logic, they will have the same truth table, and the truth table is used to define the atomic partition
operations in the graph-theoretic method. That does not mean that the three formulas are equivalent
in partition logic since the two formulas,¬π ∨ ¬σ and ¬ (π ∧ σ), are not atomic but are compound
formulas using other atomic partition operations. In subset logic, there are 16 different truth tables
for binary operations, and all compound formulas with only two variables will have a truth table
equivalent to one of the 16 possible atomic operations. In fact, there are smaller subsets of atomic
operations that can be used to define all the others in subset logic, the most famous being the nand
operation (or its negation neither-nor) by itself. But we have just seen that the binary operations
on partitions are not closed under the 16 atomic definitions definable by the graph-theoretic method
from the 16 possible truth tables. For instance, ¬π ∨ ¬σ and ¬ (π ∧ σ) also define new binary
operations on partitions—but not atomic ones.

Partitions are more complex objects than subsets, and, accordingly, partition logic is much more
complex than subset logic. We will see below that four atomic partition operations suffi ce to define
all 16 of the truth-table definable partition atomic operations, but all the compound formulas with
only two variables define a much larger universe of binary partition operations. Since there is a
countably infinite number of finite compound binary formulas, it is not even currently known if the
number of binary partition operations defined by the 16 logical atomic operations is infinite or finite.

In contrast to binary partition logical operations, the unary (including the 0-ary constants)
operations are quite manageable. There are four possible truth tables for unary operations, which
give 0U , σ,¬σ, and 1U . These are the four graph-theoretic definable atomic unary operations. What
happens when we form compound formulas? The negation applied to the top or bottom just gives
the other, and the negation of σ is ¬σ. But the double negation ¬¬σ is not necessarily the same as
σ so it is a new unary operation. But the triple negation is the same as the single negation so the
number of unary operations, atomic or compound are the five ones, the four atomic ones 0U , σ,¬σ,
and 1U and the compound operation ¬¬σ. If we allow other binary operations, then there are other
unary operations such as: σ ∨ ¬σ.

Just as the unary operation ¬σ is usefully generalized by the binary operation π¬σ = σ ⇒ π, so
the binary operation σ|τ might be usefully generalized by the ternary operation σ|πτ , which is the
nand operation relative to π. The basic idea is that the nand relativized by π is like the usual nand
but relativized to the upper segment [π,1U ] defined by π. Hence its ditset must include dit (π) so
the natural change from dit (σ|τ) = int [indit (σ) ∪ indit (τ)] to the ditset definition of σ|πτ is:

dit (σ|πτ) = int [indit (σ) ∪ indit (τ) ∪ dit (π)].
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Since all the ditset definitions can be seen as being the interior of some Boolean subset combination
of ditsets and inditsets (whether the interior operation is needed or not), the inditsets are always
the RST-closures of negated Boolean combination of inditsets and ditsets, e.g.,

indit (σ|πτ) = [dit (σ) ∩ dit (τ) ∩ indit (π)].

That closure operation corresponds to taking the transitive closure of the connected component in
the graph Gph (σ|πτ) for the equivalent graph-theoretic definition of the ternary operation. Hence
we can read off from the ditset definition’s inditset what the Fσ|πτ conditions are, namely just Tσ,
Tτ , and Fπ. Hence we see that the truth-table for that ternary operation is given in Table 1.9 which
is the truth table for the classical (not partition) formula σ|τ ∨ π.

σ τ π σ|τ ∨ π
T T T T
T T F F
T F T T
T F F T
F T T T
F T F T
F F T T
F F F T

Table 1.9: Truth table for graph-theoretic definition of σ|πτ .

Starting with that truth table, the graph Gph (σ|πτ) would only have Fσ|πτ links with TσTτFπ
on them so the transitive closure would be indit (σ|πτ) = [dit (σ) ∩ dit (τ) ∩ indit (π)] and thus the
ditset and graph-theoretic definitions agree.

Since dit (π) was included in the ditset definition, dit (σ|πτ) = int [indit (σ) ∪ indit (τ) ∪ dit (π)] ,
we have π - σ|πτ . As in the case of the unrelativized nand, we have three classically equivalent
formulas, (σ ⇒ π) ∨ (τ ⇒ π) =

π¬σ ∨ π¬τ , σ|πτ , and (σ ∧ τ) ⇒ π =
π¬ (σ ∧ τ) that are different in

partition logic where:

π¬σ ∨ π¬τ - σ|πτ -
π¬ (σ ∧ τ)

since:

int (indit (σ) ∪ dit (π)) ∪ int (indit (τ) ∪ dit (π))
⊆ int [indit (σ) ∪ indit (τ) ∪ dit (π)]
⊆ int [int (dit (σ) ∩ dit (τ))

c ∪ dit (π)]

= int
[
indit (σ) ∪ indit (τ) ∪ dit (π)

]
.

It is immediate that

dit (σ|πσ) = int [int (dit (σ) ∩ dit (σ))
c ∪ dit (π)]

= int [indit (σ) ∪ dit (π)] = dit (σ ⇒ π)

so that:

σ|πσ =
π¬σ.

It is also clear that:

σ|ππ = 1U
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since dit (σ|ππ) = int [indit (σ) ∪ indit (π) ∪ dit (π)] = int [U × U ] = dit (1U ) .

As previously defined, two partitions σ and τ on U are said to be π-orthogonal if
π¬σ∨ π¬τ = 1U .

The double π-negation
π¬π¬σ of any partition σ is its Booleanization, i.e., the closest element of the

Boolean core B [π,1U ] to σ in the sense that σ - π¬π¬σ and for any other π¬ϕ ∈ B [π,1U ] with σ -
π¬ϕ, then π¬π¬σ - π¬ϕ. This Booleanization determines a characteristic function χσ : π → 2 where
χσ (B) = 0 if the B-component of

π¬π¬σ was 0B (i.e., B is contained in a block of σ) and χσ (B) = 1

if the B-component of
π¬π¬σ was 1B (i.e., the discretized version of B).

Lemma 3 σ and τ are π-orthogonal iff
∑
B∈π χσ (B)χτ (B) = 0.

Proof: σ and τ are π-orthogonal iff each B ∈ π is contained in block of σ or a block of τ iff for each
B ∈ π, χσ (B)χτ (B) = 0. �

Every partition σ and its π-negation
π¬σ are π-orthogonal since π¬σ ∨ π¬π¬σ = 1U which is just

the law of excluded middle in the Boolean algebra B [π,1U ].

Lemma 4 σ and τ are π-orthogonal, i.e.,
π¬σ ∨ π¬τ = 1U , iff σ|πτ = 1U .

Proof : Now
π¬σ ∨ π¬τ = 1U iff for every B ∈ π, there is a C ∈ σ or a D ∈ τ , such that B ⊆ C or

B ⊆ D. Then for any link u − u′ with Fπ assigned to it, i.e., u, u′ ∈ B, (u, u′) /∈ dit (σ) ∩ dit (τ),
so the link u − u′ could not have Fσ|πτ assigned to it in Gph (σ|πτ) so σ|πτ = 1U . Conversely if
σ|πτ = 1U , then for any two u, u′ ∈ B ∈ π, we much have Fσ or Fτ assigned to the link u−u′ which
means that u, u ∈ C for some C ∈ σ or u, u′ ∈ D for some D ∈ τ . But u, u′ were arbitrary u, u′ ∈ B
so all the elements of B must belong to the same C or the same D, and that holds for any B ∈ π,
so

π¬σ ∨ π¬τ = 1U . �
The contrapositive (negation of both sides) of the Lemma is worth proving directly as a result

of the Common Dits Theorem.

Corollary 1
π¬σ ∨ π¬τ 6= 1U iff σ|πτ 6= 1U .

Proof: If
π¬σ∨ π¬τ 6= 1U , then there is a B ∈ π that not contained in any C ∈ σ or any D ∈ τ (which

implies B is not a singleton) so the partition σ restricted to B, denoted σ � B = {B ∩ C 6= ∅ : C ∈ σ}
and similarly the partition τ restricted to B, τ � B are neither the blob when the universe is B.
Hence the Common-dits Theorem applied to the universe B with the two non-blob partitions on it
implies that dit (σ � B)∩ dit (τ � B) 6= ∅ so such a distinction (u, u′) is in dit (σ)∩ dit (τ)∩ indit (π)
so σ|πτ 6= 1U . Conversely, σ|πτ 6= 1U implies such a pair (u, u′) ∈ dit (σ) ∩ dit (τ) ∩ indit (π) and
(u, u′) ∈ indit (π) means there is a B ∈ π such that u, u′ ∈ B while (u, u′) ∈ dit (σ) ∩ dit (τ). Hence
we could not have B ⊆ C (since then B ∩ C = B) for any C ∈ σ nor have B ⊆ D for any D ∈ τ ,
and thus

π¬σ ∨ π¬τ 6= 1U . �
Note that while

π¬σ ∨ π¬τ - σ|πτ -
π¬ (σ ∧ τ) and both

π¬σ ∨ π¬τ and π¬ (σ ∧ τ) are in B [π,1U ],
there is no necessity for σ|πτ to be in B [π,1U ] as illustrated in Figure 1.10 even though it is always
in the upper segment [π,1U ].
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Figure 1.10: Example where τ |πσ not in B [π,1U ].

In the example of Figure 1.10,
π¬τ∨π¬σ = π and

π¬ (τ ∧ σ) = 1U , but π - τ |πσ = {{a, e} , {b, c} , {d}} /∈
B [π,1U ].

1.4.4 The sixteen binary logical operations on partitions

There are 2(22) = 16 truth tables for binary operations. In terms of subsets S, T ⊆ U , the four rows
in the truth table for a binary operation correspond to: S ∩ T , S ∩ T c, Sc ∩ T , and Sc ∩ T c which
give the four atomic areas in the Venn diagram for S and T . Then there are 24 = 16 possible unions
of some of the atomic areas to give the 16 logically definable subsets in terms of S and T .

Taking the universe to be U × U and S, T to be dit (π) and dit (σ), there are again 16 subsets
definable in terms of these ditsets and their complementary inditsets. Some of those subsets will
already be a ditset, e.g., dit (π) ∪ dit (σ) = dit (π ∨ σ), but most will require the interior operation
to obtain a ditset, e.g., int [dit (π) ∩ dit (σ)] = dit (π ∧ σ). In this manner, the sixteen atomic binary
logical operations are defined on partitions using the ditset method. But, as already noted, there
are many other binary operations constructed from compound formulas of the atomic operations,
e.g., ¬ (σ ∧ τ) and ¬σ ∨ ¬τ , that could just as well be called "logical." Since there are a countable
number of finite compound formulas, it is not at present known if there are only a finite number of
binary logical operations on partitions. However, there are some results if we focus on the sixteen
atomic logical operations. Four of the operations, the join, meet, implication, and nand, suffi ce to
define the other atomic operations.

Lemma 5 For any subsets S, T ⊆ U × U , int [S ∩ T ] = int [int (S) ∩ int (T )].

Proof: Since int (S) ⊆ S and int (T ) ⊆ T , int [int (S) ∩ int (T )] ⊆ int [S ∩ T ]. Conversely, S ∩ T ⊆
S, T so int (S ∩ T ) ⊆ int (S)∩int (T ) and since int (S ∩ T ) is open, int [S ∩ T ] ⊆ int [int (S) ∩ int (T )].
�

The four atomic subset areas, S ∩ T , S ∩ T c, Sc ∩ T , and Sc ∩ T c, correspond to the disjunctive
normal form in subset logic. But the Lemma shows that it is conjunctive normal form (CNF) that
might be more useful in partition logic—since the corresponding result for disjunctive normal form
does not hold. Hence the strategy is to express each of the 15 (non-universal) regions definable in
U ×U from S and T as in Table 1.10 and then take S = dit (σ) and T = dit (τ) and take the interior
of the meet and use the Lemma.4

4The notation for some of the binary logical operations is taken from Church [10].
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15 regions Conjunctive Normal Form Binary operation on partitions

(S ∪ T ) ∩ (Sc ∪ T ) ∩ (S ∪ T c) ∩ (Sc ∪ T c) 0
(Sc ∪ T ) ∩ (S ∪ T c) ∩ (Sc ∪ T c) σ∨τ = ¬σ ∧ ¬τ
(S ∪ T ) ∩ (S ∪ T c) ∩ (Sc ∪ T c) τ : σ = σ ∧ ¬τ

(S ∪ T c) ∩ (Sc ∪ T c) ¬τ = τ ⇒ 0
(S ∪ T ) ∩ (Sc ∪ T ) ∩ (Sc ∪ T c) σ : τ = ¬σ ∧ τ

(Sc ∪ T ) ∩ (Sc ∪ T c) ¬σ = σ ⇒ 0
(S ∪ T ) ∩ (Sc ∪ T c) σ 6≡ τ

Sc ∪ T c σ|τ
(S ∪ T ) ∩ (Sc ∪ T ) ∩ (S ∪ T c) σ ∧ τ

(Sc ∪ T ) ∩ (T c ∪ S) σ ≡ τ
(S ∪ T ) ∩ (S ∪ T c) σ

S ∪ T c τ ⇒ σ
(S ∪ T ) ∩ (Sc ∪ T ) τ

Sc ∪ T σ ⇒ τ
S ∪ T σ ∨ τ

Table 1.10: Interior of Column 1 gives partition operation in Column 2

Using the Lemma, we may distribute the interior of the CNF subset across it with S = dit (σ)
and T = dit (τ), we get the expression for the 15 atomic operations in terms of the meet, join,
implication, and nand.5 The sixteenth operation, the constant 1, can be obtained as σ ⇒ σ or
τ ⇒ τ .

Binary operation Partition CNF for 15 binary operations

0 = (σ ∨ τ) ∧ (σ ⇒ τ) ∧ (τ ⇒ σ) ∧ (σ|τ)
σ∨τ = ¬σ ∧ ¬τ = (σ ⇒ τ) ∧ (τ ⇒ σ) ∧ (σ|τ)
τ : σ = σ ∧ ¬τ = (σ ∨ τ) ∧ (τ ⇒ σ) ∧ (σ|τ)
¬τ = τ ⇒ 0 = (τ ⇒ σ) ∧ (σ|τ)

σ : τ = ¬σ ∧ τ = (σ ∨ τ) ∧ (σ ⇒ τ) ∧ (σ|τ)
¬σ = σ ⇒ 0 = (σ ⇒ τ) ∧ (σ|τ)

σ 6≡ τ = (σ ∨ τ) ∧ (σ|τ)
σ|τ = σ|τ
σ ∧ τ = (σ ∨ τ) ∧ (σ ⇒ τ) ∧ (τ ⇒ σ)
σ ≡ τ = (σ ⇒ τ) ∧ (τ ⇒ σ)
σ = (σ ∨ τ) ∧ (τ ⇒ σ)

τ ⇒ σ = τ ⇒ σ
τ = (σ ∨ τ) ∧ (σ ⇒ τ)

σ ⇒ τ = σ ⇒ τ
σ ∨ τ = σ ∨ τ

Table 1.10: Distributing interior across intersections gives partition CNF.

In addition to the two constants 0 and 1, and the four unary operations σ, τ , ¬σ, and ¬τ , the
ten binary operations of Table 1.10 occur in natural pairs: ⇒ and ;, ⇐ and :, ≡ and 6≡, ∨ and
∨, and ∧ and |. The relationship between the operations in the pairs is not negation (except for the
join); it is orthogonality. If one of the operations applied to σ and τ is non-zero, the other must be
zero (the indiscrete partition). There is another pairing of the operations by complemention-duality.

5There are other combinations which can be taken as primitive since the inequivalence, symmetric diff erence,
exclusive-or, or xor σ 6≡ τ can be used to define the nand operation: ((σ ∨ τ)⇒ (σ 6≡ τ)) = σ | τ .

27



1.4.5 The sixteen binary logical operations on equivalence relations

For every operation on partitions or partition relations, there is a complementation-dual operation
on equivalence relations. The lattice of partitions on U enriched by implication gives the partition al-
gebra Π (U). It is isomorphic to the algebra of open subsets (partition relations or ditsets) O (U × U)
of U ×U under the mapping π ↔ dit (π). Thus O (U × U) is anti-isomorphic (under order-reversing
complementation) to the algebra of closed subsets or equivalence relations C (U × U) on U ×U . The
order-reversing isomorphism between Π (U) and C (U × U) is π ↔ indit (π). In order to keep nota-
tion analogous, we will refer to the equivalence relation indit (π) as πd, the complementation-dual
to π.

One could define the logical operations on equivalence relations directly but it is more convenient
to define them by duality. The top of the dual algebra of equivalence relations (ordered by inclusion)
is 1̂U = 0dU = indit (0U ) = U × U , the universal equivalence relation and the bottom is 0̂U = 1dU =
indit (1U ) = ∆, the diagonal.

The operations on equivalence relations or inditsets is defined as the inditset of the dual (i.e.,
complementation-dual) operation on ditsets.

• Join: indit (π)∨indit (σ) = indit (π ∧ σ) = (dit (π) ∩ dit (σ)) which in the d-superscript notation
is: πd ∨ σd = (π ∧ σ)

d
= indit (π ∧ σ);

• Meet: indit (π) ∧ indit (σ) = indit (π ∨ σ) = indit (π) ∩ indit (σ) or πd ∧ σd = (π ∨ σ)
d

=
indit (π ∨ σ); and

• Difference: indit (π)−indit (σ) = indit (σ ⇒ π) = (dit (σ) ∩ indit (π)), or: πd−σd = (σ ⇒ π)
d

=
indit (σ ⇒ π).

The dual of the implication for subsets S ⊃ T = Sc∪T by complementation is: (Sc ∪ T )
c

= S∩T c =
S − T hence the complementation-dual of implication is difference. That gives the definition of the
dual algebra of equivalence relations C (U × U) with the constants of 0̂U and 1̂U and the four
primitive operations of meet, join, and difference.

For any compound formula ϕ using the three atomic partition operations, the dual equivalence
relation ϕd is proven by standard methods to be indit (ϕ).

Proposition 3 ϕd = indit (ϕ).

Proof: The proof uses induction over the complexity of the formulas [where complexity is defined in
the standard way in propositional logic]. If ϕ is one of the constants 0U or 1U , then the proposition
holds since: 0dU = 1̂U = indit (0U ) and 1dU = 0̂U = indit (1U ). If ϕ = α is atomic, then it is true by
the definition: σd = indit (σ). If ϕ is a compound formula then the main connective in ϕ is one of
the four primitive partition operations and the main connective in ϕd is one of the four primitive
equivalence relation operations. Consider the case: ϕ = π∧σ so that ϕd = πd∨σd. By the induction
hypothesis, πd = indit (π) and σd = indit (σ), and by the definition of the equivalence relation join:
ϕd = πd ∨ σd = indit (π) ∨ indit (σ) = {indit (π) ∪ indit (σ)} = indit (ϕ). The other three cases
proceed in a similar manner. �

Substituting the dual of 0U , namely 1̂U , for πd gives the dual of negation, as: 1̂U−σd which might
be called "non-σd" and denoted as −σd.6 The Common-Dits Theorem was equivalent to the result
that if the union of two equivalence relations was the universal relation, then one of the equivalence
relations was the universal relation U × U . That is, dit (π) ∩ dit (σ) = (indit (π) ∪ indit (σ))

c so if
dit (π) ∩ dit (σ) = ∅, then the Common-dits Theorem says that dit (π) = ∅ or dit (σ) = ∅, i.e., if
indit (π)∪ indit (σ) = U ×U , then indit (π) = U ×U or indit (σ) = U ×U . In the partition case, this
implies that if σ 6= 0U , then σ ⇒ 0U = ¬σ = 0U . In the equivalence relation case, if σd 6= 1̂U , then

6See Lawvere’s discussion of "non-A" in co-Heyting algebras [35].
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1̂U − σd = −σd = 1̂U . Thus subtracting any equivalence relation less than U ×U from U ×U leaves
U × U . But subtracting U × U from itself leaves 0̂U .

The key result, derivable from the Common-dits Theorem is important enough to get its own
proof.

Proposition 4 The RST-closure dit (σ) of non-empty ditset dit (σ) is the universal equivalence
relation U × U .

Proof : Since dit (σ) is non-empty, there exists C,C ′ ∈ σ with C 6= C ′ and for any u ∈ C and
u′ ∈ C ′, (u, u′) ∈ dit (σ). The RST-closure adds the diagonal ∆ to the set so the only pairs that
need to be added to make U × U are the pairs of indit (σ) such as (u, u′′) ∈ C.

Figure 1.11: Point u connected to u′′ by transitivity in RST-closure of dit (σ).

As in Figure 1.11, (u, u′) and (u′, u′′) ∈ dit (σ) so by transitivity, any pair (u, u′′) ∈ indit (σ) is also
included in the RST-closure dit (σ) so it is U × U . �

In the case of σd 6= 1̂U implying −σd = 1̂U , σd = indit (σ) 6= indit (0U ) = 1̂U means that
dit (σ) 6= ∅ so the closure (dit (σ) ∩ indit (0U )) = dit (σ) which by the Proposition is U × U =
indit (0U ) = 1̂U . When σ = 0U , then dit (σ) = ∅ whose RST-closure is the diagonal ∆ = indit (1U ) =
1dU = 0̂U , the bottom of the algebra C (U × U) of equivalence relations.

The Lemma int [A ∩B] = int [int (A) ∩ int (B)] for A,B ⊆ U × U could also be expressed using

the closure operation as [A ∪B] =
[
A ∪B

]
. Hence the conjunctive normal form treatment of the 15

binary operations on partitions in terms of the operations of ∨, ∧,⇒, and | dualizes to the disjunctive
normal form (DNF) treatment of the 15 (dual) binary operations on equivalence relations in terms of
the dual operations ∧, ∨, −, and ∨, which are the primitive operations in the algebra of equivalence
relations C (U × U).

The previous pair of tables giving the CNF treatment of the 15 operations on partitions complementation-
dualize to give two similar tables for the DNF treatment of the 15 non-zero operations on equivalence
relations. In the Table 1.11, let S′ = indit (σ) and T ′ = indit (τ) where ()

c is complementation in
U×U . We have also taken the liberty of writing the "converse non-implication" operation as the dif-
ference operation on both equivalence relations and partitions: τd−σd = σd : τd and τ−σ = σ : τ .
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15 regions Disjunctive Normal Form Bin. op. on eq. rel. Dual to

S′c ∩ T ′c σd∨τd σ|τ
S′ ∩ T ′c σd − τd τ ⇒ σ

(S′ ∩ T ′c) ∪ (S′c ∩ T ′c) −τd ¬τ
S′c ∩ T ′ τd − σd σ ⇒ τ

(S′c ∩ T ′) ∪ (S′c ∩ T ′c) −σd ¬σ
(S′c ∩ T ′) ∪ (S′ ∩ T ′c) σd 6≡ τd σ ≡ τ

(S′c ∩ T ′) ∪ (S′c ∩ T ′c) ∪ (S′ ∩ T ′c) σd|τd σ∨τ
S′ ∩ T ′ σd ∧ τd σ ∨ τ

(S′ ∩ T ′) ∪ (S′c ∩ T ′c) σd ≡ τd σ 6≡ τ
(S′ ∩ T ′) ∪ (S′ ∩ T ′c) σd σ

(S′ ∩ T ′) ∪ (S′ ∩ T ′c) ∪ (S′c ∩ T ′c) τd ⇒ σd σ − τ
(S′ ∩ T ′) ∪ (S′c ∩ T ′) τd τ

(S′c ∩ T ′) ∪ (S′c ∩ T ′c) ∪ (S′ ∩ T ′) σd ⇒ τd τ − σ
(S′ ∩ T ′) ∪ (S′ ∩ T ′c) ∪ (S′c ∩ T ′) σd ∨ τd σ ∧ τ

(S′ ∩ T ′) ∪ (S′ ∩ T ′c) ∪ (S′c ∩ T ′) ∪ (S′c ∩ T ′c) 1̂ 0
Table 1.11: RST-closure of Column 1 gives equivalence relation binary operation in Column 2

The CNF expression for the partition symmetric difference or inequivalence is: σ 6≡ τ = (σ ∨ τ)∧
(σ|τ) so that:

dit (σ 6≡ τ) = int [int (dit (σ) ∪ dit (τ)) ∩ int (dit (σ)
c ∪ dit (τ)

c
)]

= int [(dit (σ) ∪ dit (τ)) ∩ (dit (σ)
c ∪ dit (τ)

c
)] .

Taking complements yields:

indit (σ 6≡ τ) = [(indit (σ) ∩ indit (τ)) ∪ (indit (σ)
c ∩ indit (τ)

c
)]

=
[
(indit (σ) ∩ indit (τ)) ∪ (indit (σ)

c ∩ indit (τ)
c
)
]

= [(σd ∧ τd) ∪ (σd∨τd)]
=
(
σd ∧ τd

)
∨
(
σd∨τd

)
= σd ≡ τd.

Thus the equivalence σd ≡ τd of equivalence relations has the disjunctive normal form: σd ≡ τd =(
σd ∧ τd

)
∨
(
σd∨τd

)
in the "dual" logic of equivalence relations. The disjunctive normal forms for

the 15 operations on equivalence relations is given in the following Table 1.12.
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Binary operation Equivalence relation DNF for 15 binary operations

σd∨τd = σd∨τd
σd − τd = σd − τd
−τd =

(
σd − τd

)
∨
(
σd∨τd

)
τd − σd = τd − σd
−σd =

(
τd − σd

)
∨
(
σd∨τd

)
σd 6≡ τd =

(
τd − σd

)
∨
(
σd − τd

)
σd|τd =

(
τd − σd

)
∨
(
σd∨τd

)
∨
(
σd − τd

)
σd ∧ τd = σd ∧ τd
σd ≡ τd =

(
σd ∧ τd

)
∨
(
σd∨τd

)
σd =

(
σd ∧ τd

)
∨
(
σd − τd

)
τd ⇒ σd =

(
σd ∧ τd

)
∨
(
σd − τd

)
∨
(
σd∨τd

)
τd =

(
σd ∧ τd

)
∨
(
τd − σd

)
σd ⇒ τd =

(
σd ∧ τd

)
∨
(
τd − σd

)
∨
(
σd∨τd

)
σd ∨ τd =

(
σd ∧ τd

)
∨
(
σd − τd

)
∨
(
τd − σd

)
1̂ =

(
σd ∧ τd

)
∨
(
σd − τd

)
∨
(
τd − σd

)
∨
(
σd∨τd

)
Table 1.12: Distributing closure across unions gives equivalence relation DNFs.

We should keep different notions of duality separate. The logic of partitions is dual to the logic
of subsets in the sense that partitions are category-theoretically dual to subsets. But the logic of
equivalence relations is dual to the logic of partitions in the sense of complementation duality—since
equivalence relations are the complements to partition relations in U × U . The duality between the
Heyting algebra of open subsets is the complementation-dual to the co-Heyting algebra of closed
subsets. That duality is analogous to the duality between the algebra of partitions Π(U) (or partition
relations O (U × U)) and the algebra of equivalence relations C (U × U)—except that the RST-closure
operation is not topological (union of two RST-closed subsets is not necessarily RST-closed).

2 Partition tautologies

2.1 Subset, truth-table, and partition tautologies

We consider formulas composed using the operations of ∨, ∧, ⇒, and | as well as the top and
bottom constants so that all formulas can be interpreted as being in subset logic, propositional
logic, or partition logic (as well as intuitionistic propositional logic or Heyting algebras). A subset
tautology is a formula so that no matter what subsets of any universe U (|U | ≥ 1) are substituted
for the atomic variables, the formulas evaluates (using the subset interpretation of the operations)
to the universe set U . A truth-table tautology is a formula so that no what truth values T or F are
substituted for the atomic variables, the whole formula evaluates (using the truth-table definitions
of the operations) to T .

All subset tautologies are truth-table tautologies since one can take U = 1, the one element set
so that ℘ (1) = {∅, 1} with ∅ taken as F and 1 as T . To see the converse, consider a subset formula
with m different atomic variables for which can be substituted m subsets of U . Those m subsets
define 2m atomic areas in a Venn diagram which correspond to the 2m rows in the truth table for
the formula. Each element u ∈ U must belong to one of the atomic areas so interpret u ∈ S as T
assigned to a subset S and u /∈ S as F assigned to a subset S. Then if the formula is a truth-table
tautology, e.g. Table 2.1, all the T’s in the final column will indicate that any u ∈ U is included in
the subset constructed from the formula so that subset must be U , i.e., a truth-table tautology is a
subset tautology.
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σ ρ σ ⇒ ρ σ ∧ (σ ⇒ ρ) [σ ∧ (σ ⇒ ρ)]⇒ ρ

T T T T T
T F F F T
F T T F T
F F T F T
Table 2.1: Truth-table tautology of modus ponens

Then reinterpreting the T’s and F’s as indicating that a u ∈ U belongs to an atomic area or not,
gives Table 2.2 showing that a truth-table tautology is also a subset tautology, i.e., no matter what
atomic area an element u ∈ U belongs to, it belongs to the subset generated by the final formula for
a truth-table tautology so that subset is U .

u ∈ S u ∈ R u ∈ S ⊃ R u ∈ S ∩ (S ⊃ R) u ∈ [S ∩ (S ⊃ R)] ⊃ R
T T T T T
T F F F T
F T T F T
F F T F T

Table 2.2: Truth-table tautology reinterpreted as showing the formula is a subset tautology.

As mentioned previously, one of the reasons for the retarded development of the logic of partitions,
even though the duality between partitions and subsets has been well-known since the middle of the
twentieth century, is that subset logic is almost always presented as just propositional logic where
validities or tautologies are defined as truth-table tautologies and subset tautologies are ignored.

A ‘partition tautology’is defined just like a subset tautology with partitions on U substituted
for subsets of U . That is, a partition tautology is a formula such that no matter what partitions on
a universe U (|U | ≥ 2), the formula evaluates using the partition operations to the top, the discrete
partition 1U . It is also useful to define a weak partition tautology as a formula that under the same
substitutions never evaluates to the bottom, the indiscrete partition 0U . Then a partition tautology
is obviously a weak one too. Moreover, it is easily seen that:

ϕ is a weak partition tautology iff ¬¬ϕ is a partition tautology.

The law of excluded middle formula σ ∨ ¬σ is the simplest example of a subset tautology that is
also a weak partition tautology but not a (‘strong’) partition tautology.

The simplest non-degenerate partition algebra is Π (2), where 2 = {0, 1} ("the" two-element
set), the algebra with only two partitions, 02 = {{0, 1}} and 12 = {{0} , {1}}. The simplest non-
degenerate Boolean subset algebra is ℘ (1) where 1 is "the" one-element set which has only two
subsets, ∅ and 1. The results of any set of partition operations on Π (2) can be described by a ‘truth
table’since there are only two partitions. For instance, the partition operations on the modus ponens
formula are given in Table 2.3.

σ ρ σ ⇒ ρ σ ∧ (σ ⇒ ρ) [σ ∧ (σ ⇒ ρ)]⇒ ρ

12 12 12 12 12

12 02 02 02 12

02 12 12 02 12

02 02 12 02 12

Table 2.3: ‘Truth table’for modus ponens formula in Π (2).

The basic point is that the partition operations on Π (2) have the same ‘truth tables’as the
propositional or subset operations in ℘ (1) so the two algebras are isomorphic in that sense:

℘ (1) ∼= Π (2).
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In particular, any formula that is a weak partition tautology would never evaluate to 02 so it must
always evaluate to 1U in Π (2) which is isomorphic, in turn, to ℘ (1) so it must always evaluate to 1
or T in the truth table for the formula. Hence we have proven:

Proposition 5 Any weak partition tautology is a truth-table tautology. �

Corollary 2 Any partition tautology is a truth-table tautology. �

For an example of truth-table tautology that is not a weak partition tautology, consider the sim-
plest example of non-distributivity where τ = {{a, b} , {c}}, σ = {{a, c} , {b}}, and π = {{a} , {b, c}}
and the formula is:

[τ ∧ (π ∨ σ)]⇒ [(τ ∧ π) ∨ (τ ∧ σ)].

That formula is an ordinary tautology but for those partitions substituted for the variables, the
result is 0U so it is not a weak partition tautology. Thus the weak partition tautologies (and thus
the partition tautologies) are properly contained in the truth-table tautologies.

When comparing partition tautologies (weak or not), there is no inclusion either way with the
valid formulas of intuitionistic propositional logic (or Heyting algebras). The accumulation formula,
σ ⇒ (π ⇒ (π ∧ σ)), is valid in both classical and intuitionistic logic but not in partition logic. The
law of excluded middle, σ ∨¬σ, is a weak partition tautology, and the weak law of excluded middle,
¬σ ∨ ¬¬σ, is a partition tautology that is not intuitionistically valid.

2.2 The finite model property

If a formula ϕ is not valid according to subset or partition semantics, then a universe and subsets or
partitions that do not evaluation to the top would be a countermodel. If a formula is not a subset (or
truth-table) tautology, then it suffi ces to take U = 1 to give a subset countermodel, and in view of
the isomorphism, ℘ (1) ∼= Π (2), it suffi ces to take U = 2 to have a partition countermodel. But what
about formulas that are subset tautologies but not partition tautologies? For subsets, it suffi ces to
take |U | = 1 to find countermodels. Is there an n such that for all |U | ≤ n, if ϕ evaluates to 1U for
all partitions on U , then ϕ is a partition tautology for any U? The following result, adapted from
lattice theory, shows that there is no such n.

Proposition 6 There is no n such that if any ϕ has no partition countermodel on any universe U
with |U | ≤ n, then ϕ is a partition tautology.

Proof: Consider any fixed n ≥ 2. We use the standard device of a "universal disjunction of equations"
[28, p. 316] to construct a formula ωn that evaluates to 1U for any substitutions of partitions on
U with |U | ≤ n and yet the formula is not a partition tautology. Let Bn be the Bell number, the
number of partitions on a set U with |U | = n. Take the atomic variables to be πi for i = 0, 1, ..., Bn
so that there are Bn + 1 atomic variables. Let ωn be the join of all the equivalences between distinct
atomic variables:

ωn =
∨
{πi ≡ πj : 0 ≤ i < j ≤ Bn}.

Then for any substitution of partitions on U where |U | ≤ n for the atomic variables, there is, by the
pigeonhole principle, some "disjunct" πi ≡ πj = (πi ⇒ πj)∧ (πj ⇒ πi) which has the same partition
substituted for the two variables so the disjunct evaluates to 1U and thus the join ωn evaluates to 1U .
Thus ωn evaluates to 1U for any substitutions of partitions on any U where |U | ≤ n. To see that ωn
is not a partition tautology, take U = {0, 1, ..., Bn} and let πi be the atomic partition which has i as
a singleton and all the other elements of U as a block, i.e., πi = {{i} , {0, 1, ..., i− 1, i+ 1, ..., Bn}}.
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Then πi ⇒ πj = πj and πj ∧ πi = 0U so that ωn = 0U for that substitution and thus ωn is not even
a weak partition tautology. �

This result leaves open the question of whether or not partition logic has the finite model
property. That is, if ϕ is not a partition tautology, then does it have a countermodel with a finite
U?

If π is a partition on U and S ⊆ U , then π � S = {B ∩ S 6= ∅ : B ∈ π} is a partition on S.

Lemma 6 Let ϕ be a formula (always finite) involving the four basic connectives, join, meet, and
implication, and the two constants 0U and 1U . Then for any partitions π1, ..., πn on a universe set
U substituted for the atomic variables, if the partition, ϕ (π1, ..., πn) has a proper indit (u, u′) (i.e.,
u 6= u′), then the indit only involves a finite set of elements U ′ ⊆ U such that (u, u′) is also an indit
of ϕ (π1 � U ′, ..., πn � U ′).

Proof : The proof uses induction over the complexity of the formula ϕ. At the atomic level, if (u, u′)
is an indit of a partition (including 0U ), then it is also an indit of the partition cut down to any
finite U ′ containing u and u′. Assuming the hypothesis for formulas of lesser complexity, suppose
that ϕ = σ ∗ π where ∗ is one of the three basic connectives.

• Join: indit (σ ∨ π) = indit (σ) ∩ indit (π) so an indit (u, u′) ∈ indit (σ ∨ π) only uses one indit
in σ and π;

• Meet: indit (σ ∧ π) = (indit (σ) ∪ indit (π)) so an indit in the closure requires a finite chain
of links drawn from indit (σ) and indit (π) and each of those indits uses only a finite set of
elements from U by the induction hypothesis; and

• Implication: dit (σ ⇒ π) = int [dit (σ)
c ∪ dit (π)] so indit (σ ⇒ π) = (dit (σ) ∩ indit (π)) and

thus it only involves a finite chain of indits for π which, in turn, uses only a finite set of
elements from U .

Since a finite union of finite sets is finite, there is a finite U ′ ⊆ U so that (u, u′) ∈ indit (ϕ (π1 � U ′, ..., πn � U ′)).�

Proposition 7 (Finite model property) If a formula ϕ is not a partition tautology, then it al-
ways has a finite countermodel.

Proof : If ϕ is not a partition tautology, then there is a universe U and partitions π1, ..., πn on U
such that when substituted for the atomic variables of ϕ, then the partition ϕ (π1, ..., πn) 6= 1U .
Hence that partition contains a non-singleton block {u, u′, ...}. By the lemma, the indit (u, u′) only
involves a finite set U ′ ⊆ U of elements so that (u, u′) is also an indit of ϕ (π1 � U ′, ..., πn � U ′) and
thus the formula ϕ has a finite countermodel. �

2.3 Generating partition tautologies using the Boolean core B [π,1U ]
For any fixed partition π on U , a π-regular partition in Π (U) is a partition of the form σ ⇒ π for any
σ. We previously showed that the π-regular partitions form a Boolean algebra (BA) B [π,1U ] where
the partition operations of join, meet, and implication also act as the corresponding BA operations
in B [π,1U ] and where π is the bottom (or zero element) and 1U is the top of the BA. Hence any
classical (= subset = truth-table) tautology, e.g., σ ∨ (σ ⇒ 0), expressed in the language of join,
meet, implication, and the two constants, when formulated in B [π,1U ] would always evaluate to 1U
using the BA operations when any π-regular elements are substituted for the variables. But the BA
operations are the same as the corresponding partition operations so classical tautologies in B [π,1U ]
yield partition tautologies.

This connection can be formalized by converting any classical tautology into the corresponding
tautology in B [π,1U ] and thus into a partition tautology. Given any classical formula using the
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connectives of ∨, ∧, ⇒ and the constants of 0 and 1, its single π-negation transform is obtained by
replacing each atomic variable σ by its single π-negation

π¬σ = σ ⇒ π and by replacing the constant
0 by π and 1 by 1U . The binary operations ∨, ∧, and⇒ all remain the same. For instance, the single
π-negation transform of the excluded middle formula σ ∨ ¬σ = σ ∨ (σ ⇒ 0) is the weak excluded
middle formula for π-negation:

(σ ⇒ π) ∨ ((σ ⇒ π)⇒ π) =
π¬σ ∨ π¬π¬σ.

Then the single π-negation transformed formula is a tautology in the BA B [π,1U ], so it is also
a partition tautology. This formula is also an example of a partition tautology that is not a valid
formula of intuitionistic logic (either for π = 0U or in general).

Proposition 8 The single π-negation transform of any classical tautology is a partition tautology.
�

This process can be repeated using double negation. The double π-negation transform of a
classical formula using the connectives of ∨, ∧, ⇒ and the constants of 0 and 1 is obtained by
replacing any atomic variable σ by its double π-negation

π¬π¬σ = (σ ⇒ π)⇒ π and by replacing the
constant 0 by π and 1 by 1U . The binary operations ∨, ∧, and ⇒ all remain the same.

Proposition 9 The double π-negation transform of any classical tautology is a partition tautology.
�

The double π-negation transform of excluded middle is the formula
π¬π¬σ ∨ π¬π¬π¬σ. Since the

π-negation has the effect of flipping the π-blocks B back and forth being locally equal to 0B or 1B
(i.e., from being whole to being discretized), it is clear that

π¬σ =
π¬π¬π¬σ so the formula π¬π¬σ∨ π¬π¬π¬σ

is equivalent to
π¬π¬σ ∨ π¬σ.

The BA of regular elements is not the only idea that can be usefully transplanted from intu-
itionistic logic to partition logic. The partition analogue of the Gödel transform [26] that produces
an intuitionistic validity from each classical tautology can be constructed in the following manner.
For any classical formula ϕ in the language of ∨, ∧, and ⇒ as well as 0 and 1, we define the Gödel
π-transform ϕgπ of the formula as follows:

• If ϕ is atomic, then ϕgπ = ϕ ∨ π;

• If ϕ = 0, then ϕgπ = π, and if ϕ = 1, then ϕgπ = 1U ;

• If ϕ = σ ∨ τ , then ϕgπ = σgπ ∨ τgπ ;

• If ϕ = σ ⇒ τ , then ϕgπ = σgπ ⇒ τgπ ; and

• if ϕ = σ ∧ τ , then ϕgπ =
π¬π¬σgπ ∧

π¬π¬τgπ .

When π = 0, then we write ϕg0 = ϕg. We first consider the case for π = 0.

Lemma 7 ϕ is a classical tautology iff ϕg is a weak partition tautology iff ¬¬ϕg is a partition
tautology.

Proof: The idea of the proof is that the partition operations on the Gödel 0-transform ϕg mimic the
Boolean 0, 1-operations on ϕ if we associate the partition interpretation σg = 0 with the Boolean
σ = 0 and σg 6= 0 with the Boolean σ = 1. We proceed by induction over the complexity of the
formula ϕ where the induction hypothesis is that: ϕ = 1 in the Boolean case iff ϕg 6= 0 in the
partition case, which could also be stated as: ϕ = 0 in the Boolean case iff ϕg = 0 in the partition
case. If ϕ is atomic, then ϕg = ϕ ∨ 0 = ϕ. The Boolean assignment ϕ = 0 (the Boolean truth value
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0) is associated with the partition assignment of ϕ = 0U (the indiscrete partition) and for atomic
ϕ, ϕ = ϕ ∨ 0U = ϕg so the hypothesis holds in the base case.

For the join in the Boolean case, ϕ = σ ∨ τ = 1 iff σ = 1 or τ = 1. In the partition case,
ϕg = σg ∨ τg 6= 0U iff σg 6= 0U or τg 6= 0U , so by the induction hypothesis, ϕ = σ ∨ τ = 1 iff σ = 1
or τ = 1 iff σg 6= 0U or τg 6= 0U iff ϕg = σg ∨ τg 6= 0U .

For the implication in the Boolean case, ϕ = σ ⇒ τ = 0 iffσ = 1 and τ = 0. In the partition case,
ϕg = σg ⇒ τg = 0U iff σg 6= 0U and τg = 0U . Hence using the induction hypothesis, ϕ = σ ⇒ τ = 1
iff σ = 0 or τ = 1 iff σg = 0U or τg 6= 0U iff ϕg = σg ⇒ τg 6= 0U .

For the meet in the Boolean case, ϕ = σ ∧ τ = 1 iff σ = 1 = τ . In the partition case, ϕg =
¬¬σg ∧ ¬¬τg = 1U iff ¬¬σg = 1U = ¬¬τg iff σg 6= 0U 6= τg. By the induction hypothesis,
ϕ = σ∧τ = 1 iff σ = 1 = τ iff σg 6= 0U 6= τg iffϕg = ¬¬σg∧¬¬τg = 1U iffϕg = ¬¬σg∧¬¬τg 6= 0U .

Thus ϕ is a classical tautology iff under any Boolean interpretation, ϕ = 1 iff for any partition
interpretation, ϕg 6= 0U iff ϕg is a weak partition tautology iff ¬¬ϕg is a partition tautology. �

In this case of π = 0U , the negation ¬σ = σ ⇒ 0U is unchanged and, for atomic variables ϕ,
ϕ ∨ 0U = ϕ so atomic variables are left unchanged in the Gödel 0U -transform. Hence any classical
formula ϕ expressed in the language of ¬, ∨, and ⇒ (excluding the meet ∧) would be unchanged by
the Gödel 0-transform.

Corollary 3 For any formula ϕ in the language of ¬, ∨, and ⇒ along with 0 and 1, ϕ is a classical
tautology iff ϕ is a weak partition tautology iff ¬¬ϕ is a partition tautology.
For instance, the Gödel 0U -transform of excluded middle σ ∨¬σ is the same formula, σ ∨¬σ, which
is a weak partition tautology, and ¬¬ (σ ∨ ¬σ) is a partition tautology.

The lemma generalizes to any π in the following form.

Proposition 10 ϕ is a classical tautology iff
π¬π¬ϕgπ is a partition tautology.

Proof: For any fixed partition π on a universe set U , the interpretation of the Gödel π-transform
ϕgπ is in the upper interval [π,1U ] ⊆ Π(U). The key to the generalization is the standard result 7

that the upper interval [π,1U ] can be represented as the product of the sets Π(B) where B is a
non-singleton block of π:

[π,1U ] ∼=
∏
{Π(B) : B ∈ π, B non-singleton}.

Once we establish that the Gödel π-transform ϕgπ can be obtained, using the isomorphism, by
computing the Gödel 0-transform ϕg "component-wise" in Π(B), then we can apply the lemma
component-wise to obtain the result.

Given a partition π on U , any interpretation of an atomic ϕ as a partition on U can be cut down
to each non-singleton block B ∈ π to yield a partition on B. Then ϕgπ = ϕ ∨ π has a block B ∈ π
iff ϕg0 = ϕg is equal to the zero 0B of Π(B). Proceeding by induction over the complexity of ϕ, if
ϕ = σ ∨ τ , then a block of ϕgπ = σgπ ∨ τgπ is B iff B is a block of both σgπ and τ

g
π iff σ

g = 0B = τg in
Π (B) iff ϕg = σg ∨ τg = 0B in Π (B). If ϕ = σ ⇒ τ , then ϕgπ = σgπ ⇒ τgπ has a block B ∈ π iff σgπ
does not have the block B and τgπ has the block B iff σg is not equal to 0B and τg is equal to 0B
in Π (B) iff ϕg = σg ⇒ τg = 0B in Π (B). If ϕ = σ ∧ τ , then ϕgπ =

π¬π¬σgπ ∧
π¬π¬τgπ has a block B ∈ π

iff both σgπ and τ
g
π have a block B iff σg = 0B = τg in Π(B) iff ϕg = ¬¬σg ∧ ¬¬τg = 0B in Π(B).

Hence applying the lemma component-wise, ϕ is a classical tautology iff ϕg never evaluates to
0B in Π(B) iff B is never a block of ϕgπ iff every block B ∈ π is discretized in

π¬π¬ϕgπ, i.e.,
π¬π¬ϕgπ is a

partition tautology. �
Thus the Gödel π-transform of excluded middle ϕ = σ ∨ (σ ⇒ 0) is ϕgπ = (σ ∨ π) ∨ (σ ⇒ π)

and
π¬π¬ [(σ ∨ π) ∨ (σ ⇒ π)] is a partition tautology. Note that the single π-negation transform, the

double π-negation transform, and the Gödel π-transform all gave different formulas starting with
the classical excluded middle tautology.

7Since the partition lattice is conventionally written upside down, the usual result is stated in terms of the interval
below π [28, p. 192].
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2.4 Some partition tautologies

One source of some interesting results on partitions was Oystein Ore’s early work on equivalence
relations [41]. He defined two partitions to be associable if every block in their meet was a block of
one or the other (or both).

Lemma 8 The following statements are equivalent:

1. σ and τ are associable;

2. no block of one partition just partially overlaps with a block of the other, i.e., for any C ∈ σ
and D ∈ τ , if C ∩D 6= ∅, then C ⊆ D or D ⊆ C;

3. indit (σ) ∪ indit (τ) = indit (σ ∧ τ), i.e., dit (σ) ∩ dit (τ) = dit (σ ∧ τ).

Proof : If C ∩D 6= ∅, C −D 6= ∅, and D − C 6= ∅, then a block in the meet will strictly contain C
and D so it is not a block in σ or in τ so not #2 implies not #1, i.e., #1 implies #2 And if #2 holds,
and C ∩D 6= ∅, then say C ⊆ D. Then for any other C ′∩D 6= ∅, we cannot have D ⊆ C ′ so C ′ ⊆ D.
Thus D is the exact union of the C ∈ σ that overlap it so it is a block in the meet. And if C ∩D 6= ∅
and D ⊆ C, then by symmetry C is the exact union of D ∈ τ that overlap it so it is a block in the
meet. Hence #1 and #2 are equivalent. Since indit (σ ∧ τ) = indit (σ) ∪ indit (τ), if #3 is not true,
then there exists (u, u′) ∈ indit (σ) and (u′, u′′) ∈ indit (τ) so that (u, u′′) is in the closure but not
in the union. But that implies that there is a C ∈ σ and D ∈ τ with u ∈ C −D, u′ ∈ C ∩D, and
u′′ ∈ D − C which negates #2 so #2 implies #3. Suppose #3 holds. For any C ∩D 6= ∅, there is a
block M ∈ σ ∧ τ with C,D ⊆ M . But if C " D and D " C, then there is u ∈ C −D, u′ ∈ C ∩D,
and u′′ ∈ D−C. Then (u, u′) ∈ indit (σ) and (u′, u′′) ∈ indit (τ) and the union of the inditsets is an
inditset, so (u, u′′) must be included in the union but it is included in neither of the inditsets in the
union. Hence C ⊆ D or D ⊆ C so #3 implies #2. �

Although Ore didn’t define the π-regular partitions (not having the partition implication), the
partitions in the Boolean core B [π,1U ] are all associable since their block-wise operation follows
from their ‘truth table’(see Table 4.2). Ore showed that any partition joined with the meet of two
associable partitions will distribute across the meet. Hence we have the following corollary for any
partitions ϕ, σ, τ , and π.

Lemma 9 (Ore’s associability theorem) ϕ ∨
(
π¬σ ∧ π¬τ

)
=
(
ϕ ∨ π¬σ

)
∧
(
ϕ ∨ π¬τ

)
.

Moreover, if we assume that ϕ is in the upper segment [π,1U ], then the other distributivity law
holds. In proving results about π-regular partitions, it is often useful to think in terms of B-slots as
pictured in Figure 2.1.

Figure 2.1: The B-slots in a π-regular partition.

Lemma 10 ("Dual" to Ore’s theorem) If π - ϕ, then ϕ∧
(
π¬σ ∨ π¬τ

)
=
(
ϕ ∧ π¬σ

)
∨
(
ϕ ∧ π¬τ

)
.
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Proof: If π - ϕ, then every block J ∈ ϕ is contained in a block B of π. If the result on the left-

hand side for
(
π¬σ ∨ π¬τ

)
for that B-slot is 1B (i.e., the discretized version of B), then J stays a

block in ϕ ∧
(
π¬σ ∨ π¬τ

)
. If the result of

(
π¬σ ∨ π¬τ

)
for that B is 0B , then B is a block in the meet

ϕ ∧
(
π¬σ ∨ π¬τ

)
. On the right-hand side, if the result of

(
π¬σ ∨ π¬τ

)
concerning that B-slot was 1B ,

then either
π¬σ or π¬τ (or both) was 1B then either

(
ϕ ∧ π¬σ

)
or
(
ϕ ∧ π¬τ

)
is J in part of the B-slot

(and the other is J or B) so the join is J. If the B-slot in
(
π¬σ ∨ π¬τ

)
was 0B , then both

(
ϕ ∧ π¬σ

)
and

(
ϕ ∧ π¬τ

)
are B and thus so is the meet. �

Corollary 4 Any ϕ ∈ [π,1U ] and any π-regular partition are associable.

Proof : The meet ϕ∧ π¬σ has in the B-slot either J (along with other J ′ ∈ ϕ) or B so its blocks are
always a block of one of the partitions in the meet. �

Proposition 11 (Distributivity over the Boolean core) If π � ϕ,

ϕ ∨
(
π¬σ ∧ π¬τ

)
=
(
ϕ ∨ π¬σ

)
∧
(
ϕ ∨ π¬τ

)
ϕ ∧

(
π¬σ ∨ π¬τ

)
=
(
ϕ ∧ π¬σ

)
∨
(
ϕ ∧ π¬τ

)
. �

F. William Lawvere has developed a number of interesting results in the context of co-Heyting
algebras ([34]; [35]) we might look at the corresponding results in partition algebras. Since he was
working with co-Heyting algebras (analogous to the algebra of equivalence relations), we need to
dualize some of the terminology for the algebra of partitions. Thus the "difference from 1" (e.g.,
(¬σ)

d
= (σ ⇒ 0)

d
= σd : 0d = 0d − σd in the algebra of equivalence relations where 0d = 1̂ is the

top or "one" of that algebra) has the dual "implication to 0U ," i.e., ¬σ = σ ⇒ 0U , in the partition
algebra. Since the "implication to zero" negation is so trivial, we will also relativize the negation
using an arbitrary π in place of 0U .

Lawvere defined the "boundary" of an element as the meet with its negation, so dualizing we
can define the π-coboundary of a partition σ as the join ∂πσ = σ∨ π¬σ with its π-negation. Thinking
in terms of the B-slot in ∂πσ = σ ∨ π¬σ, if there is a C ∈ σ with B ⊆ C, then the B-slot is 1B and
otherwise the B-slot is the restriction σ � B = {C ∩B 6= ∅ : C ∈ σ}. Lawvere’s boundary is nowhere
dense in the sense that its double negation is zero, and in our dual case, the π-coboundary is π-dense
in the sense that its π-double-negation transform is 1U :

π¬π¬∂πσ =
π¬π¬
(
σ ∨ π¬σ

)
= 1U .

Lawvere defines the "core" of an element as its double negation and then proves that each
element is equal to its boundary joined with its core. In the dual case of partitions, we have the
π-version of that result.

Proposition 12 (Lawvere’s boundary + core law for partitions) ∂πσ ∧ π¬π¬σ = σ ∨ π.

Proof: This is easily proved from Ore’s associability theorem using some basic identities such as the
"law of contradiction" in Bπ:

π¬σ ∧ π¬π¬σ = π as well as σ � π¬π¬σ so that σ ∨ π¬π¬σ =
π¬π¬σ. Then

using Ore’s theorem:

σ ∨ π = σ ∨
(
π¬σ ∧ π¬π¬σ

)
=
(
σ ∨ π¬σ

)
∧
(
σ ∨ π¬π¬σ

)
= ∂πσ ∧ π¬π¬σ.�
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Restricting to σ ∈ [π, 1], any σ that refines π (so that σ ∨ π = σ) can be reconstructed from its
π-double-negation

π¬π¬σ by taking the meet with its π-coboundary ∂πσ = σ ∨ π¬σ.

Corollary 5 If σ ∈ [π, 1], then σ = ∂πσ ∧ π¬π¬σ. �

Lawvere showed that the Leibniz (fg)
′

= f (g′)+(f ′) g holds in the co-Heyting algebra of closed
subsets by replacing the derivative by the boundary. In our case, the dual Leibniz rule holds using
the π-coboundary.

Proposition 13 (co-Leibniz rule for partitions) ∂π(σ ∨ τ) = (∂πσ ∨ τ) ∧ (σ ∨ ∂πτ).

Proof: Analyzing using B-slots, ∂π(σ ∨ τ) = (σ ∨ τ) ∨ π¬ (σ ∨ τ) so the blocks of σ ∨ τ are the non-
empty intersections, and the contents of the B-slot are 1B if there is a C ∈ σ and D ∈ τ such that
B ⊆ C ∩ D, and otherwise are the restriction (σ ∨ τ) � B = {C ∩D ∩B 6= ∅ : C ∈ σ,D ∈ τ}. On
the RHS, the B-slot contents of ∂πσ ∨ τ = σ ∨ τ ∨ π¬σ are 1B if there is a C ∈ σ with B ⊆ C and
otherwise (σ ∨ τ) � B. The B-slot contents of σ ∨ ∂πτ = σ ∨ τ ∨ π¬τ are 1B if there is a D ∈ τ with
B ⊆ D and otherwise (σ ∨ τ) � B. Hence the B-slot contents of the meet (∂πσ ∨ τ) ∧ (σ ∨ ∂πτ) are
1B if there is both a C ∈ σ and a D ∈ τ with B ⊆ C,D and is otherwise (σ ∨ τ) � B. Hence both
sides have the same B-slot content and thus are equal. �

2.5 Partition logic via the RST-closure space ℘ (U × U)
2.5.1 The RST-closure space ℘ (U × U)

In the Boolean logic of subsets, the standard semantics is the powerset Boolean algebra ℘ (U) and
the analogous structure for partition logic would seem to be the algebra of partitions Π (U). But
partition logic is more complicated and has a richer theory. The partition algebra Π (U) is isomorphic
to the algebra of open subsets O (U × U) where an open subset of U × U (a partition relation) is
the complement of the Reflexive-Symmetric-Transitive or RST closure of any subset of U × U . The
powerset Boolean algebra on U × U (i.e., the BA of all binary relations on U) equipped with the
RST-closure operation will be called the RST-closure space of U , ℘ (U × U).

The RST-closure is a closure operation in the standard sense [4, p. 111]: for any V,W ⊆ U ×U ,

• V ⊆ V ,

• V = V (idempotent) and

• If V ⊆W , then V ⊆W (monotone).

It follows that the closed subsets, i.e., V = V , form a complete lattice, the complete lattice
of equivalence relations on U in our case. The complements of the closed subsets of ℘ (U × U) are
the open subsets which are the partition relations (ditsets of partitions) and give the isomorphism
Π (U) ∼= O (U × U). Arbitrary intersections of closed subsets are closed and thus arbitrary unions of
open subsets are open. But the RST-closure is not topological in that sense that a union of closed
subsets is not necessarily closed, and thus an intersection of open subsets is not necessarily open.
Just as every subset V has a closure (which is an equivalence relation, the intersection of all closed
subsets containing V ), so every subset has an interior int (V ) = (V c)

c
, the complement of the RST-

closure of the complement of V , which is the ditset of a partition on U which might be denoted.
λ (int (V )), read as "the partition whose ditset is int (V )."

The adjunctive definition of the partition implication:

dit (τ) ∩ dit (σ) ⊆ dit (π) iff dit (τ) ⊆ int (dit (σ)
c ∪ dit (π))
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was formulated in ℘ (U × U) . It hints that the deeper analysis of partition logic might be better
formulated in that closure space rather than Π (U).

By working in a powerset BA, we also have the luxury of using illustrations using Venn diagrams.
Each partition π on U partitions the space into dit (π) and indit (π). The largest consequence of
working with ℘ (U × U) is the logical definition of information as distinctions so the information
given in a partition π is given by its ditset dit (π). For finite U , a probability measure on U × U
is obtained by using the product measure from U where the probability measure on U could be
equiprobable points or point probabilities. Then the probability assigned to dit (π) is the logical
entropy h (π). The development of logical entropy and its relation to Shannon entropy provides new
logical foundations for information theory that has been developed elsewhere [23]. Hence the focus
here is on partition logic itself.

The "structure theorem" for those two complementary subsets gives:

indit (π) = ∪B∈πB ×B and dit (π) = ∪B,B′∈π,B 6=B′B ×B′

where the union for dit (π) are interpreted to include both B×B′ and B′×B. Given two partitions π
and σ, the two partitions on U×U intersect to give 22 = 4 atomic areas. The unions in the following
propositions are interpreted as including the permutations of the factors in the Cartesian products.

Proposition 14 Structure theorem for 4-part partition of closure space U × U given by any σ and
π:

1.
⋃

B∈π,C∈σ
(B − (B ∩ C))× (C − (B ∩ C)) = dit (π) ∩ dit (σ) ;

2.
⋃

B∈π,C∈σ
(B − (B ∩ C))× (B ∩ C) = (indit (π) ∩ dit (σ)) ;

3.
⋃

B∈π,C∈σ
(B ∩ C)× (C − (B ∩ C)) = (indit (σ) ∩ dit (π)) ;and

4.
⋃

B∈π,C∈σ
(B ∩ C)× (B ∩ C) = indit (σ) ∩ indit (π).

Proof : Part 1: The union is disjoint since each summand will differ by a B or a C. Assume (u, u′) ∈
(B − (B ∩ C)) × (C − (B ∩ C)) so u ∈ B − (B ∩ C) = B − C and u′ ∈ C − B. Since u′ ∈ C − B,
it must be in a different block of π than B so (u, u′) ∈ dit (π). Similarly since u ∈ B − C, it must
be in a different block of σ than C so (u, u′) ∈ dit (σ) and thus (u, u′) ∈ dit (π)∩ dit (σ). Conversely
if (u, u′) ∈ dit (π) ∩ dit (σ), then u is in some block B ∈ π and u′ is in some block C ∈ σ. But
since (u, u′) is a dit of both partitions u cannot be in C and u′ cannot be in B so u ∈ B − C and
u′ ∈ C −B and thus (u, u′) ∈ (B − C)× (C −B).

Part 2: Let (u, u′) ∈ (B − C) × (B ∩ C) so u is in B but not in C while u′ is in both so
(u, u′) ∈ indit (π) ∩ dit (σ). Conversely, if (u, u′) ∈ indit (π) ∩ dit (σ) then for u, u′ ∈ B ∈ π and
u′ ∈ C ∈ σ, then since (u, u′) ∈ dit (σ), u must be in a different block C ′ ∈ σ so u ∈ B − C and
u′ ∈ B ∩ C.

Parts 3 and 4 proved in a similar manner. �
These structure theorems extend to the 2n atomic areas determined by n partitions on U .
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Figure 2.2: Four atomic areas in U × U Venn diagram for two partitions.

The structure theorem shows how ditsets or inditsets of a partition can be constructed from how
the partition ‘interacts’with another partition. For instance, the disjoint union of the two atomic
areas in Figure 2.2 giving dit (π) is:

dit (π) = (dit (π) ∩ dit (σ)) ∪ (dit (π) ∩ indit (σ))

=
⋃

B∈π,C∈σ
(B − C)× (C −B)

⋃ ⋃
B∈π,C∈σ

(B ∩ C)× (C −B) .

In logical information theory for a finite U with the product probability distribution on U × U , the
logical entropy of a partition is the probability of its ditset, h (π) = Pr (dit (π)). Then dit (π)∩dit (σ)
represents the mutual information (i.e., common distinctions) of π and σ whose probability is
m (π, σ) = Pr (dit (π) ∩ dit (σ)) and dit (π) ∩ indit (σ) = dit (π) − dit (σ) represents the informa-
tion given by π after we take away the information of σ whose probability is h (π|σ). Hence the
representation of dit (π) as the disjoint union gives the representation of the information in π as the
sum of the information in common with σ plus the information in π after the information in σ has
been taken away:

h (π) = m(π, σ) + h (π|σ).

The structure theorem also allows us to connect properties of partitions with properties of their
ditsets. For instance, two partitions π and σ on a finite U are said to be (stochastically) independent
if with equiprobable points, for all B ∈ π and C ∈ σ, pB∩C = pBpC , i.e.,

|B∩C|
|U | = |B|

|U |
|C|
|U | or

|B ∩ C| |U | = |B| |C|. The equiprobable distribution on U induces the equiprobable distribution on
U ×U , so we also have the notion of two events V,W ⊆ U ×U being independent if pV ∩W = pV pW ,
i.e., |V ∩W ||U×U | = |V |

|U×U |
|W |
|U×U | or |V ∩W | |U |

2
= |V | |W |.

Proposition 15 If π and σ are independent partitions, then dit (π) and dit (σ) are independent
events in U × U (equiprobable points on finite U).

Proof : If π and σ are independent partitions, then |B ∩ C| |U | = |B| |C| for all B ∈ π and C ∈ σ.
Since the unions in the Structure Theorem are disjoint, the unions can be expressed as sums. Thus
from Part 1, we have:
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|dit (π) ∩ dit (σ)| =
∑
B∈π,C∈σ (|B| − |B ∩ C|)× (|C| − |B ∩ C|)

|dit (π) ∩ dit (σ)| =
∑

B∈π,C∈σ
(|B| − |B ∩ C|) (|C| − |B ∩ C|)

=
∑

B∈π,C∈σ

(
|B| − |B| |C||U |

)(
|C| − |B| |C||U |

)
=

1

|U |2
∑

B∈π,C∈σ
(|B| |U | − |B| |C|) (|C| |U | − |B| |C|)

=
1

|U |2
∑

B∈π,C∈σ
(|B| (|U | − |C|)) (|C| (|U | − |B|))

=
1

|U |2

[∑
B∈π
|B| (|U | − |B|)

][∑
C∈σ
|C| (|U | − |C|)

]

=
1

|U |2
|dit (π)| |dit (σ)| .�

Furthermore, dividing both sides of the equation by |U |2 gives for independence in the equiprobable
case;

m (π, σ) = h (π)h (σ)

as one would expect since logical entropies are the two-draws-from-U probabilities of getting a
distinction. Hence in the case of independence, the probability that two draws yield a distinction of
both π and σ is the product of the probability of getting a distinction of π times the probability of
getting a distinction of σ.

2.5.2 The sixteen binary logical operations

Starting with two subsets dit (σ) and dit (τ) in a Venn diagram, there are sixteen possible unions of
the four atomic areas (each union defined by whether each atomic area is included or not), so there
are sixteen definable areas in the Venn diagram. The interiors of the sixteen definable areas define
the ditsets of the sixteen binary logical operations on partitions—and their closures define the sixteen
binary logical operations on equivalence relations. The operations have a natural pairing since each
definable area has a definable complement so the interiors of those complementary subsets gives a
complement-pairing of operations. For instance, the interior int [dit (σ) ∩ dit (τ)] is dit (σ ∧ τ) and
the interior of its complement int [indit (σ) ∪ indit (τ)] is dit (σ|τ). Previously, we defined that two
partitions ϕ and ϕ′ are orthogonal if ¬ϕ ∨ ¬ϕ′ = 1U . The negation ¬ϕ = ϕ ⇒ 0U is either 0U if
ϕ 6= 0U or 1U if ϕ = 0U . Hence ϕ and ϕ′ are orthogonal iff one or both are 0U . There is the partition
identity:

¬ϕ ∨ ¬ϕ′ = ϕ⇒ ¬ϕ′ = ϕ′ ⇒ ¬ϕ

which carries the sense that when ¬ϕ∨¬ϕ′ = 1U then if one is not 0U , then the other has to be 0U .
Since the interior of a definable area and the interior of its complement are disjoint, we know from
the Common Dits Theorem that one of them has to be 0U so the complementary-dual partitions
are orthogonal. Table 2.4 gives the complementary duality pairings.
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Defined subset S ⊆ U × U int (S) is dit set int (Sc) is dit set

U × U 1U 0U
dit (σ) ∪ dit (τ) σ ∨ τ σ∨τ = ¬σ ∧ ¬τ

indit (σ) ∪ dit (τ) σ ⇒ τ τ : σ = σ ∧ ¬τ
dit (τ) τ ¬τ

dit (σ) ∪ indit (τ) τ ⇒ σ σ : τ = τ ∧ ¬σ
dit (σ) σ ¬σ

(dit (σ) ∩ dit (τ)) ∪ (indit (σ) ∩ indit (τ)) (σ ⇒ τ) ∧ (τ ⇒ σ) (σ ∨ τ) ∧ (σ|τ)
dit (σ) ∩ dit (τ) σ ∧ τ σ|τ

Table 2.4: Complementary-dual pairing of sixteen binary logical operations.

In the standard Venn diagram for two subsets dit (σ) and dit (τ), there are four atomic areas
and 24 = 16 definable subsets. Those subsets can be arranged as the vertices of the 4-hypercube
graph Q4 where the edges are the Hasse diagram inclusions, i.e., an edge indicates an inclusion with
no other subsets in between. Since the interior operator is monotonic, we can take the interiors of all
the subsets so the vertices can be labeled with the corresponding partitions and the edges indicate
refinement relations. In Figured 2.3, the equivalence (σ ⇒ τ) ∧ (τ ⇒ σ) and the inequivalence (or
symmetric difference) have been abbreviated respectively as σ ⇐⇒ τ and σ∆τ .

Figure 2.3: Hypercube graph representation of the sixteen binary logical operations on partitions.

With each vertex in the graph, there is an opposite vertex (representing the complementary subset)
and the corresponding partitions are the complementary duals. For instance, the dual of σ ∨ τ
is ¬σ ∧ ¬τ and the dual of σ∆τ is σ ⇐⇒ τ . Furthermore, it might be noticed that whenever two
partitions have a common immediate predecessor, then since int (S ∩ T ) = int (int (S) ∩ int (T )), then
that common predecessor is their meet. For instance, (σ ∨ τ)∧(σ|τ) = σ∆τ and σ∧(σ∆τ) = σ∧¬τ .
The same relation for common successors does not hold for the join (unless we dualize to equivalence
relations). For instance, σ|τ is an immediate common successor of ¬σ and ¬τ but is not necessarily
their join.

Due to the rather ‘severe’nature of the 0U -negation σ ⇒ 0U , we have seen that more interesting
structure emerges by relativizing the operations to some fixed π. In the usual Venn diagram for three
areas, dit(π), dit (σ), and dit (τ), there are eight atomic areas. But to work in the segment [π,1U ],
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we focus on the areas that include dit (π). There are four atomic areas outside of dit (π) as in Figure
2.4 that could be unioned with dit (π).

Figure 2.4: The four atomic areas outside of dit (π).

But since we are working in the BA ℘ (U × U), we can distribute the union of dit (π) with these four
areas to get the four π-relativized ‘atomic’areas:

• dit (π) ∪ (indit (π) ∩ dit (σ) ∩ indit (τ)) = dit (π) ∪ (dit (σ) ∩ indit (τ));

• dit (π) ∪ (indit (π) ∩ dit (σ) ∩ dit (τ)) = dit (π) ∪ (dit (σ) ∩ dit (τ));

• dit (π) ∪ (indit (π) ∩ indit (σ) ∩ dit (τ)) = dit (π) ∪ (indit (σ) ∩ dit (τ)); and

• dit (π) ∪ (indit (π) ∩ indit (σ) ∩ indit (τ)) = dit (π) ∪ (indit (σ) ∩ indit (τ)).

There again sixteen definable unions of these four areas and the interiors of those sixteen areas
give the sixteen π-relativized ‘binary’ logical operations on partition—which are actually ternary
operations of a special form. Moreover, each of the areas has a complement in U × U with dit (π)
added back in to give the π-complementary-dual π-relativized partition operations in Table 2.5. In
Table 2.5, S = dit (σ), T = dit (τ), P = dit (π), and c is complement.

V ⊆ U × U int (V ∪ P ) is ditset int (V c ∪ P ) is ditset

V = U × U 1U π

V = S ∪ T σ ∨ τ ∨ π π¬σ ∧ π¬τ
V = Sc ∪ T σ ⇒ (τ ∨ π) (σ ∨ π) ∧ π¬τ
V = T τ ∨ π π¬τ

V = S ∪ T c τ ⇒ (σ ∨ π)
π¬σ ∧ (τ ∨ π)

V = S σ ∨ π π¬σ
V = (S ∩ T ) ∪ (Sc ∩ T c) (σ ⇒ (τ ∨ π)) ∧ (τ ⇒ (σ ∨ π)) (σ ∨ τ ∨ π) ∧ (σ|πτ)

V = S ∩ T (σ ∨ π) ∧ (τ ∨ π) σ|πτ
Table 2.5: π-complementary-duals of π-relativized partitions.

Figure 2.5 is the hypercube graph drawn by replacing each partition in Figure 2.3 by its π-relativized
version and the same relationships hold.
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Figure 2.5: Hypercube graph for sixteen π-relativized binary logical operations.

It is then immediate that the meet of each partition with its π-complementary dual is π as
indicated in Table 2.5.

Meet of π-complementary-duals = π

1U ∧ π = π

(σ ∨ τ ∨ π) ∧
(
π¬σ ∧ π¬τ

)
= π

(σ ⇒ (τ ∨ π)) ∧
(

(σ ∨ π) ∧ π¬τ
)

= π

(τ ∨ π) ∧
(
π¬τ
)

= π

(τ ⇒ (σ ∨ π)) ∧
(
π¬σ ∧ (τ ∨ π)

)
= π

(σ ∨ π) ∧
(
π¬σ
)

= π

(σ ⇒ (τ ∨ π)) ∧ (τ ⇒ (σ ∨ π)) ∧ (σ ∨ τ ∨ π) ∧ (σ|πτ) = π
((σ ∨ π) ∧ (τ ∨ π)) ∧ (σ|πτ) = π

Table 2.5: Meet of π-complementary dual partitions.

One immediate result is that the π-negation of the LHS formulas in Table 2.5 are π ⇒ π = 1U , so

the π-negation of all the LHS formulas are partition tautologies, e.g.,
π¬
[
(σ ∨ π) ∧

(
π¬σ
)]

= 1U .

This basic theorem is essentially a π-generalization of the Common-Dits Theorem.

Theorem 11 For any V ⊆ U × U , each block B ∈ π is contained in a block of int (V ∪ dit (π)) or
in a block of int (V c ∪ dit (π)).

Proof : Taking σ as the partition with the ditset int (V ∪ dit (π)), i.e., σ = λ (int (V ∪ dit (π))),
and τ = λ (int (V c ∪ dit (π))), we have dit (π) ⊆ dit (σ) ⊆ V ∪ dit (π) and dit (π) ⊆ dit (τ) ⊆
V c ∪ dit (π) so that dit (σ) ∩ dit (τ) = dit (π). Complementing gives indit (σ) ∪ indit (τ) = indit (π).
Then for any B ∈ π, consider the two cut-down partitions on B, σ � B and τ � B. Then (B ×B) ∩
(indit (σ) ∪ indit (τ)) = B × B and (B ×B) ∩ indit (σ) = indit (σ � B) and (B ×B) ∩ indit (τ) =
indit (τ � B). Thus

indit (τ � B) ∪ indit (τ � B) = B ×B
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so by the equivalence relation version of the Common-Dits Theorem, either indit (σ � B) = B × B
or indit (τ � B) = B ×B so B ⊆ C for some C ∈ σ or B ⊆ D for some D ∈ τ . �

Of course, a block B ∈ π is contained in any π-regular partition π¬σ or its π-negation π¬π¬σ in
Bπ but the theorem is more general for any ϕ (taking V = dit (ϕ)) and its π-complementary-dual
λ (int (indit (ϕ) ∪ dit (π))).

Corollary 6 For any V ∈ U × U , for ϕ = λ (int (V ∪ dit (π))) and ϕ′ = λ (int (V c ∪ dit (π))), ϕ
and ϕ′ are π-orthogonal.

Proof : Now ϕ and ϕ′ are π-orthogonal if
π¬ϕ ∨ π¬ϕ′ = 1U . Since B is contained in a block of ϕ or

ϕ′, the B-slot in
π¬ϕ or π¬ϕ′ will be 1B , so the join is 1U . �

Corollary 7 The pairs of π-complementary dual operations on any σ and τ are π-orthogonal. �

It should be noted that for different V ’s, λ (int (V ∪ dit (π))) can be the same partition with
different π-orthogonals λ (int (V c ∪ dit (π))). For instance with π = 0U , for V = dit (σ) ∩ dit (τ),
σ ∧ τ = λ (int (V )) and for V ′ = int [dit (σ) ∩ dit (τ)] = dit (σ ∧ τ), then we also have σ ∧ τ =
λ (int (V ′)). But taking complements,

λ (int (V c)) = λ (int (indit (σ) ∪ indit (τ))) = σ|τ and
λ (int (V ′c)) = λ (int (indit (σ ∧ τ))) = ¬ (σ ∧ τ) = (σ ∧ τ)⇒ 0U

which are not necessarily the same, although there is the ordering relationship:

¬σ ∨ ¬τ - σ|τ - ¬ (σ ∧ τ).

2.5.3 The π-orthogonal algebra Aπ = [π,1U ]

We have seen a number of suggestive analogies between the upper segment [π, 1U ] of Π (U) and the
Heyting algebra of open subsets of a topological space. All the sixteen binary logical operations on
partitions can be defined relative to π, and in particular, negation is then π-negation. In a Heyting
algebra and in the upper segment [π, 1U ], the negated elements form a Boolean algebra. In the
Heyting algebra of open subsets, there is a natural notion of disjointness, namely the intersection of
open subsets is the null set, and the negation of an open subset is the largest open subset disjoint from
it. Similarly, in the upper segment [π, 1U ], there is the notion of π-orthogonality between partitions
and the π-negation of a partition is the largest (most refined) partition π-orthogonal to it. All of
these similarities suggest that the upper segment [π, 1U ] is an algebraic object worthy of study in its
own right. Roughly speaking, it is to partitions (i.e., open subsets of ℘ (U × U)) what the Heyting
algebra is to open subsets of a topological space. Hence we will call the upper segments [π, 1U ] ,
π-orthogonal algebras, and denote them as Aπ.

The π-orthogonal algebras are of independent interest since they are not Heyting algebras as we
have seen for a number of reasons such as they are not distributive as lattices and the π-negation
is not a (relative) pseudo-complementation. Moreover, there is not inclusion either way between
partition tautologies and Heyting algebra validities. However one way to study the π-orthogonal
algebras is to look at the similarities and dissimilarities with Heyting algebras of open subsets.
Hence we start with a number of corollaries of previous results that show similarities.

Corollary 8 If ϕ and ϕ′ are π-orthogonal, then ϕ ∨ π and ϕ′ ∨ π are π-orthogonal and (ϕ ∨ π) ∧
(ϕ′ ∨ π) = π. In particular, if π - ϕ,ϕ′, then ϕ ∧ ϕ′ = π.

Proof : Since ϕ∨ π and ϕ′ ∨ π refine π and each B must be contained in a block of ϕ or ϕ′, B must
equal a block of ϕ ∨ π or ϕ′ ∨ π, so the B-slot in the join is always 1B and in the meet is 0B = B,
i.e., (ϕ ∨ π) ∧ (ϕ′ ∨ π) = π. �
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For an example using the partition notation that concatenated letters (with no commas in
between) are in the same block, let ϕ = {abc, def}, ϕ′ = {abe, cdf} and π = {ab, cd, ef}. Then
π¬ϕ = {a, b, cd, e, f} and π¬ϕ′ = {a, b, c, d, ef} so ϕ and ϕ′ are π-orthogonal but ϕ ∧ ϕ′ = 0U . But
ϕ∨π = {ab, c, d, ef} and ϕ′∨π = {ab, cd, e, f}, so they are still π-orthogonal and (ϕ ∨ π)∧(ϕ′ ∨ π) =
π.

Corollary 9 For any partition ϕ,
π¬ϕ is the maximal (i.e., most refined) π-orthogonal partition to

ϕ.

Proof : Any ϕ and
π¬ϕ are π-orthogonal since π¬ϕ ∨ π¬π¬ϕ = 1U , i.e., the law of excluded middle in

the BA B [π,1U ]. If ϕ′ is any other π-orthogonal partition to ϕ, then ϕ′ ⇒ π¬ϕ = 1U so ϕ′ -
π¬ϕ. �

It is tempting to think that ϕ∧ϕ′ = π is equivalent to π-orthogonality in analogy with disjoint-
ness in a Heyting algebra. But that is not so since for ϕ = {ab, c}, ϕ′ = {a, bc}, and π = 0U , then
ϕ ∧ ϕ′ = 0U but ϕ and ϕ′ are not orthogonal. The meet-related characterization of π-orthogonality
is just a little more subtle.

Corollary 10 If π - σ, τ and σ and τ are π-orthogonal, then σ and τ are associable.

Proof : Since π - σ, τ , for any B ∈ π, then exactly B must be a block in either σ or τ so each block
in the meet σ ∧ τ = π must be a block of σ or τ , so they are associable. �

The converse does not hold since each partition is trivially associable with itself.

Corollary 11 For π - σ, τ ; σ and τ are π-orthogonal iff dit (σ) ∩ dit (τ) = dit (π).

Proof : If π - σ, τ and σ and τ are π-orthogonal, then σ and τ are associable so by a previous lemma,
dit (σ) ∩ dit (τ) = dit (σ ∧ τ) = dit (π). Conversely, if dit (σ) ∩ dit (τ) = dit (π), then indit (σ) ∪
indit (τ) = indit (π). Thus indit (σ) ∪ indit (τ) ∪ dit (π) = U × U so indit (τ)

c
= dit (τ) ⊆ indit (σ) ∪

dit (π) and thus taking interiors,

int [dit (τ)] = dit (τ) ⊆ int [indit (σ) ∪ dit (π)] = dit (σ ⇒ π)

so τ - π¬σ. Then π¬π¬σ - π¬τ and

1U =
π¬σ ∨ π¬π¬σ - π¬σ ∨ π¬τ

so 1U =
π¬σ ∨ π¬τ , i.e., σ and τ are π-orthogonal. �

Lemma 12 If
π¬σ � ψ, then ψ =

π¬σ ∨
(
ψ ∧ π¬σ′

)
for any π-orthogonal σ′.

Proof: If ∃C ∈ σ with B ⊆ C, then
(
π¬σ
)
B

= 1B and thus ψB = 1B . Otherwise,
π¬σ′ = 1B and(

ψ ∧ π¬σ′
)
B

= ψB so for each B ∈ π, the expression gives ψB . �

Lemma 13 For any π � ψ, and any π-orthogonal σ, τ , ψ =
(
ψ ∧ π¬σ

)
∨
(
ψ ∧ π¬τ

)
.

Proof: Since
π¬σ∨ π¬τ = 1U , the B-slot is 1B in one or the other, and for that one, say,

(
ψ ∧ π¬σ

)
B

=

ψB . The other is either also ψB or B, and in either case, the join gives ψB . �

Lemma 14 For any π � ψ, and any σ, ψ =
(
ψ ∨ π¬σ

)
∧
(
ψ ∨ π¬π¬σ

)
.

Proof: By Ore’s theorem, ψ = ψ ∨ π = ψ ∨
(
π¬σ ∧ π¬π¬σ

)
=
(
ψ ∨ π¬σ

)
∧
(
ψ ∨ π¬π¬σ

)
. �

47



Lemma 15 If σ, σ′ are π-orthogonal and τ, τ ′ are also π-orthogonal and all refine π, then σ∨ τ and
σ′ ∧ τ ′ are π-orthogonal.

Proof : We have
π¬σ∨ π¬σ′ = 1U and the same for τ and τ ′. What we need to show is that

π¬ (σ ∨ τ)∨
π¬ (σ′ ∧ τ ′) = 1U . Thus we assume that B is not discretized in

π¬ (σ ∨ τ) which means that B was
further distinguished or broken up in σ or in τ . But that means that there is a C ′ ∈ σ′ or a D′ ∈ τ ′
such that C ′ = B = D′. Since both σ′ and τ ′ refine π, the block B would be reconstructed whole in
σ′ ∧ τ ′ and thus B would be discretized in

π¬ (σ′ ∧ τ ′). �

Lemma 16 If π � σ, τ, τ ′ and τ, τ ′ are π-orthogonal, then σ ⇒ τ and σ ∧ τ ′ are π-orthogonal.

Proof : We have
π¬τ ∨ π¬τ ′ = 1U and π � σ which implies that π � (σ ⇒ τ) , (σ ∧ τ ′). We need to

show
π¬ (σ ⇒ τ) ∨ π¬ (σ ∧ τ ′) = 1. Thus we assume that B ∈ π is not discretized in π¬ (σ ⇒ τ) which

means either 1) D ∈ τ was distinguished further from B so B is a block in τ ′ and is thus discretized
in

π¬ (σ ∧ τ ′), or 2) that D = B but was discretized in σ ⇒ τ which means that C was also equal to
B. But then C = B means that B survives as a block in σ∧τ ′ and thus B is discretized in π¬ (σ ∧ τ ′).
�

Lemma 17 If π � ϕ,ϕ′ are π-orthogonal, i.e.,
π¬ϕ ∨ π¬ϕ′ = 1U , then for any ψ ∈ [π, ϕ] and

ψ′ ∈ [π, ϕ′], ψ,ψ′ are also π-orthogonal.

Proof : Since ψ � ϕ, π¬ϕ � π¬ψ and similarly for ψ′ so 1U =
π¬ϕ ∨ π¬ϕ′ � π¬ψ ∨ π¬ψ′. �

Corollary 12 Given π-orthogonal π - ϕ,ϕ′ and any π � ψ, ϕ∧ψ and ϕ′ ∧ψ are π—orthogonal. �

Corollary 13 If ϕ,ϕ′ are π-orthogonal, then ϕ⇒ π¬ϕ′ and ϕ′ ⇒ π¬ϕ are partition tautologies.

Proof : Being π-orthogonal means
π¬ϕ∨ π¬ϕ′ = 1U which in turn means that any B ∈ π is contained

in a block of ϕ or a block of ϕ′. If B is contained in a block of ϕ′, then the B-slot in
π¬ϕ′ is 1B and

thus also in ϕ⇒ π¬ϕ′. If B was not contained in a block of ϕ′, then the B-slot in
π¬ϕ′ is 0B = B but

B then has to be contained in a block of ϕ so the B-slot in ϕ⇒ π¬ϕ′ is again 1B . Thus ϕ⇒
π¬ϕ′ is

a partition tautology and similarly for ϕ′ ⇒ π¬ϕ by symmetry. �

Corollary 14 If ϕ and ϕ′ are π-orthogonal and ϕ is a partition tautology, then so is
π¬ϕ′.

Proof : Modus ponens
[
ϕ ∧

(
ϕ⇒ π¬ϕ′

)]
⇒ π¬ϕ′ is a partition tautology so if ϕ is, then so is π¬ϕ′. �

The proof technique of using the B-component or B-slot of a partition σ ∈ [π,1U ] is based on the
representation of that upper segment as the product of the partition algebras Π (B) for non-singleton
B ∈ π:

[π,1U ] ∼=
∏
{Π (B) : B ∈ π,B non-singleton} [28, p. 192].

Each σ ∈ [π,1U ] corresponds to the product of the restrictions σ � B ∈ Π (B), and given an element
of that product, σ is reconstructed by taking the union of all blocks in the chosen partitions in Π (B)
plus the singleton blocks. The π-regular partitions are the ones constructed with only 0B or 1B from
each Π (B), which make up the Boolean core B [π,1U ] of the segment [π,1U ]. The π-orthogonal pairs
σ, τ ∈ [π,1U ] are the pairs where for every (non-singleton) B ∈ π, σ � B = 0B or τ � B = 0B . The
construction of

π¬σ means replacing each σ � B = 0B by 1B and each σ � B 6= 0B by 0B .
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3 The dual structure on the algebra of partitions

3.1 Co-negation on partitions

The previous results about the 16 logical operations on partitions were restated as complementary-
dual operations on equivalence relations. This produced no new operations on partitions (or partition
relations or ditsets); it produced just a complementary viewpoint. Our topic now is the genuinely
dual structure on the algebra of partitions Π (U) that does define new operations on partitions.
The structure on Π (U) covered above based on negation and implication will be called the primal
structure and the structure on Π (U) based on co-negation and co-implication or difference is the
dual structure.

In the analogy with Heyting algebras, this dual structure gives the partition version of co-
negation and co-implication associated with co-Heyting algebras—so that the partition algebra is
akin to a bi-Heyting or Heyting-Brouwer algebra except that it is more complicated by virtue of
being non-distributive.

The previously developed partition negation ¬σ = σ ⇒ 0U might be associated with the "truth-
value" of "Same as 0U?" applied to σ. In other words, if σ = 0U , then ¬σ = 1U since σ is then the
"Same as 0U", and otherwise when σ 6= 0U , then ¬σ = 0U . The dual co-negation is associated with
the degree of "Difference from 1U?" applied to σ. The indiscrete partition 0U has only one block U ,
while the discrete partition 1U has the maximum number of blocks |U |, so the co-negation "Difference
from 1U ," denoted 1U − σ = −σ is a more varied measure than the negation σ ⇒ 0U = ¬σ.

A partition is said to be modular if there is at most one block that is not a singleton and there is
not just one singleton, so 1U and 0U are both modular partitions. The set-of-blocks definition of the
co-negation 1U − σ = −σ is the partition where all the singleton blocks of σ are collected together
in one block and all the non-singleton blocks of σ are atomized into singletons. Thus the co-negated
partitions are the same as the modular partitions.

In the context of co-Heyting algebras, Lawvere [35, p. 279] described the non-σ negation as the
smallest element whose join with σ is the top element—just as the negation ¬σ is the largest element
whose meet with σ is the bottom element. Both the negation ¬σ and co-negation −σ satisfy that
requirement even though the lattice of partitions Π (U) (being non-distributive) is neither a Heyting
nor a co-Heyting algebra.

For instance, if σ = {a, b, cd, ef}, then the co-negation is the modular partition−σ = {ab, c, d, e, f}
and the double co-negation is the modular partition − − σ = {a, b, cdef} with − − σ - σ. The co-
negation of 1U is 1U − 1U = 0U , the co-negation of 0U is 1U − 0U = 1U , and for any σ 6= 0U ,1U ,
the co-negation −σ is between the top and bottom of Π (U) with the singletons in −σ indicating
the degree of σ’s "difference from 1U ." That is, 1U − 1U = −1U = 0U indicates σ = 1U has no
difference from 1U (i.e., the "difference from 1U" is maximally false) while 1U − 0U = 1U indicates
σ = 0U has complete difference from 1U (i.e., the "difference from 1U" is maximally true), and
otherwise 1U − σ = −σ is in between. Any σ with no singletons or a single singleton is also treated
as completely different from 1U so −σ = 1U .

To see in more detail how the dualization works between negation and co-negation as well as to
set up the relativized cases of π-negation and π-co-negation, consider the following characterizations
of the two negations. For the negation ¬σ, i.e., "Same as 0U", the definition is given in Table 3.1.

If (σ ∨ 0U )U 6= U , then (¬σ)U = (σ ⇒ 0U )U = U
If (σ ∨ 0U )U = U , then (¬σ)U = (σ ⇒ 0U )U = 1U � U
Table 3.1: Definition of the negation σ ⇒ 0U = ¬σ.

Then the dual version is given in Table 3.2 for co-negation, i.e., "Difference from 1U".

If (σ ∧ 1U ){u} 6= {u} ,then (−σ){u} = (1U − σ){u} = {u}
If (σ ∧ 1U ){u} = {u}, then (−σ){u} = (1U − σ){u} = 0U � {u}

Table 3.2: Definition of the co-negation 1U − σ = −σ.
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In Table 3.2, the blocks are singletons {u} ∈ 1U , (σ ∧ 1U ){u} stands for the block of σ∧1U containing
{u} as a subset, and 0U � {u} stands for the non-singleton block including u. Hence if (σ ∧ 1U ){u} =

{u}, then {u} was a singleton block of σ so (1U − σ){u}, the block of the the co-negation containing
u, is the non-singleton block represented by 0U � {u}, and if (σ ∧ 1U ){u} 6= {u}, then {u} was part
of a bigger block in σ so it is turned into a singleton, i.e., the block of (1U − σ){u} containing u is
the singleton {u}.

The co-regular partitions are the co-negated elements of Π (U), i.e., the modular partitions. We
form an algebra M [Π (U)] = {−σ : σ ∈ Π (U)} of the modular partitions. Each modular partition
(6= 1U ) has the form {...,M, ...} of one non-singleton blockM , called themodular block, and otherwise
two or more singleton blocks or no singleton blocks when M = U . The co-negation in the algebra
just interchanges the modular block and the singletons, i.e., the modular block is atomized into
singletons and the singletons are collected together to form the modular block of the co-negation.
The top of the algebra is 1U and the bottom 0U . The coatoms in M [Π (U)] are the partitions of
the form {..., {u, u′} , ...} and the atoms are their co-negations {{u} , U − {u, u′} , {u′}}. Given two
co-regular partitions σ = {...,M, ...} and τ = {...,M ′, ...}, their join is the partition {...,M ∩M ′, ...}
which would be 1U if M ∩M ′ was a singleton or empty, and that is the join σ ∨ τ in Π (U). If M
and M ′ overlap, their meet in the algebra is the modular partition {...,M ∪M ′, ...} which is the
meet in Π (U), but is otherwise not the meet (...,M,M ′, ...) in Π (U). In general, the modular meet
{...,M ∪M ′, ...} in the algebra is the double co-negation −− (σ ∧ τ) = {...,M ∪M ′, ...}.

Oystein Ore [41] showed that every partition π on U generates a Boolean algebra B (π), a
complete subalgebra of ℘ (U), whose subsets are just the unions of blocks of π. In the case of π = 1U ,
B (1U ) = ℘ (U). To relateM [Π (U)] to B (1U ), we have to (as before) make a special treatment of the
singletons. Since for |U | = 2, Π (U) is already a Boolean algebra under the partition operations, we
assume |U | ≥ 3. The problem caused by singletons is that partitions of the form µu = {{u} , U − {u}}
have a single non-singleton but are not the co-negation of any partitions due to the single singleton.
Hence we need to make a number of changes toM [Π (U)] to createM [Π (U)]

∗ in order to relate it
to B (1U ) = ℘ (U). We make the following changes:

• introduce all the µu = {{u} , U − {u}} partitions as the atoms inM [Π (U)]
∗;

• introduce a new layer of coatoms between previous coatoms {..., {u, u′} , ...}, the new coatoms
being |U | copies of the discrete partition but, for each u ∈ U , with one singleton

{
..., {u}∗ , ...

}
marked to act as the ‘modular block’M which is then treated as the co-negation −µu =
−{{u} , U − {u}} so that −

{
..., {u}∗ , ...

}
= {{u} , U − {u}};

• in the refinement ordering -, {...,M, ...} -
{
..., {u}∗ , ...

}
iff u ∈M ; and

• when M ∩M ′ is a singleton {u}, then the join is {...,M ∩M ′, ...} =
{
..., {u}∗ , ...

}
, otherwise

when M ∩M ′ = ∅, then {...,M ∩M ′, ...} is the top 1U .

The partition operations inM [Π (U)]
∗ correspond to the Boolean operations in B (1U ) = ℘ (U)

as follows:

• Join: (...,M, ...) ∨ (...M ′, ...) = (...,M ∩M ′, ...) and if M ∩M ′ = {u} then it is
(
..., {u}∗ , ...

)
.

If M ∩M ′ = ∅, then the join is 1U .

• Meet: The modular-meet is −− (...,M, ...) ∧ (...M ′, ...) = (...,M ∪M ′, ...).

• Co-negation: − (...,M, ...) = (...,M c, ...) where the singletons are the elements ofM andM c =
U −M .

These changes form a new algebra M [Π (U)]
∗ which is a Boolean algebra anti-isomorphic to

B (1U ) = ℘ (U) under the one-to-one correspondence: {...,M, ...} ←→M ∈ B (1U ) = ℘ (U):
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M [Π (U)]
∗op ∼= B (1U ) = ℘ (U).

The Boolean algebraM [Π (U)]
∗ is not a sublattice of Π (U) due to modular-meet operation (double

co-negation of the ordinary meet), not to mention the added coatoms
(
..., {u}∗ , ...

)
. Thus we cannot

infer that Boolean tautologies in M [Π (U)]
∗ will be partition tautologies in Π (U)—as we could do

for the Boolean cores in the primal structure (formed by ∨, ∧, ¬, 0U , and 1U ).
The Boolean algebra B (1U ) is formed by taking all unions of the blocks of 1U , i.e., all subsets

M ∈ ℘ (U). The added coatoms
{
..., {u}∗ , ...

}
correspond to the singletons (the atoms of B (1U )),

the atomic partitions µu = {{u} , U − {u}} correspond to the coatoms of B (1U ), and in general
{...,M, ...} ←→M ∈ B (1U ) to form the anti-isomorphism. The refinement ordering between modular
partitions (...,M, ...) - (...,M ′, ...) iffM ′ ⊆M is why it is an order-reversing isomorphism.

For an example as to why M [Π (U)] is not a Boolean algebra without the added atoms and
coatoms, consider the following example. All the partitions π = {a, d, bc}, σ = {b, d, ac}, and τ =
{ab, c, d} are modular but π ∧ σ = {d, abc} and π ∧ τ = {d, abc} which are not modular. And the
σ ∨ τ = 1U so:

π ∧ (σ ∨ τ) = π = {a, d, bc} 6= {d, abc} = (π ∧ σ) ∨ (π ∧ τ)

and thus distributivity fails. But when we add the coatoms
{
..., {u}∗ , ...

}
as the co-negations of the

atomic partitions µu, then σ ∨ τ = {b, d, ac} ∨ {ab, c, d} = {a∗, b, c, d} (since M ∩M ′ = {a}). And
then

π ∧ (σ ∨ τ) = {a, d, bc} ∧ {a∗, b, c, d} = {abc, d}
= {d, abc} ∨ {d, abc} = (π ∧ σ) ∨ (π ∧ τ)

so distributivity is not violated. The corresponding operations in ℘ (U) under the anti-isomorphism
are:

{b, c} ∪ ({a, c} ∩ {a, b}) = {b, c} ∪ {a} = {a, b, c} and
({b, c} ∪ {a, c}) ∩ ({b, c} ∪ {a, b}) = {a, b, c} ∩ {a, b, c} = {a.b.c}

which are the elements in the modular block of {abc, d}.

3.2 Some tautologies for co-negation

We have extensively studied the tautologies for the negation σ ⇒ 0U = ¬σ and the π-relative
negation or implication

π¬σ = σ ⇒ π. Here only some of the new tautologies for co-negation will be
mentioned.

Perhaps the most obvious difference is that the law of excluded middle holds for co-negation so
it is a partition tautology:

σ ∨ −σ = 1U .

The proof is simply that every block of σ that is not a singleton will be atomized into singletons in
−σ so the join is all singletons, i.e., 1U .

In the context of co-Heyting algebras ([35], [34]), Lawvere calls −− σ the core of σ and σ ∧−σ
the boundary ∂σ of σ and then notes that σ is reconstructed as the join of its core and boundary,
and this holds for co-negation in partition algebras as well:

−− σ ∨ ∂σ = σ.

In the case of the example σ = {a, b, cd, ef}, we have −σ = {ab, c, d, e, f} and −− σ = {a, b, cdef}
so that the boundary is ∂σ = σ ∧ −σ = {ab, cd, ef} and σ = −σ ∨ ∂σ.

The proofs requires us to keep track of a few generic types of blocks for any partition σ:
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• the Original Singletons of σ, i.e., os (σ);

• the Original Non-Singletons of σ, i.e., ons (σ);

• the Modular block obtained by joining the Original Singletons of σ, i.e., mos (σ) (unless
|os (σ)| = 1);

• the Singletons obtained by atomizing the Original Non-Singletons of σ or sons (σ); and

• the Modular block formed by the union of the Original Non-Singletons of σ or mons (σ).

Then we can characterize some of the partitions formed by co-negation as follows:

σ = {os (σ) , ons (σ)}
−σ = {mos (σ) , sons (σ)}

Complications arise when there is a single singleton, i.e., |os (σ)| = 1. Then os (σ) = mos (σ) so
that −σ = 1U . Then the treatment of the double co-negation splits into two cases:

−− σ =

{
{os (σ) ,mons (σ)} if |os (σ)| 6= 1
0U if |os (σ)| = 1

.

Note that in either case, the triple co-negation is the same as the single co-negation:

−−−σ = −σ.

And in either case, the boundary of σ is:

∂σ = σ ∧ −σ = {mos (σ) , ons (σ)}.

The proof the law of excluded middle for co-negation is then:

σ ∨ −σ = {os (σ) , ons (σ)} ∨ {mos (σ) , sons (σ)} = {os (σ) , sons (σ)} = 1U .

Then the proof of Lawvere’s core plus boundary result, −− σ ∨ ∂σ = σ, consists in observing that:

−− σ ∨ ∂σ = {os (σ) ,mons (σ)} ∨ {mos (σ) , ons (σ)} = {os (σ) , ons (s)} = σ

or if mos (σ) = os (σ), i.e., |os (σ)| = 1, then:

−− σ ∨ ∂σ = 0U ∨ {mos (σ) , ons (σ)} = {os (σ) , ons (s)} = σ.

Furthermore, the boundary ∂ (−− σ) of −− σ is the same as the boundary ∂ (−σ) of −σ:

∂ (−− σ) = −− σ ∧ −−−σ = −− σ ∧ −σ = ∂ (−σ) = {mos (σ) ,mons (σ)}.

Thus ∂ (−σ) is refined by ∂σ so ∂ (−σ)⇒ ∂σ is a partition tautology. For negation, σ - ¬¬σ so we
might expect − − σ - σ to hold in the dual structure which means that − − σ ⇒ σ is a partition
tautology. The proof is simply the observation that −−σ = {os (σ) ,mons (σ)} - {os (σ) , ons (σ)} =
σ or − − σ = 0U - σ. Then σ = − − σ if and only if mons (σ) = ons (σ) and mos (σ) 6= os (σ), so
that σ has only one non-singleton block and not just one singleton block, i.e., when σ is modular.

These calculations for co-negation might be simplified if we translate them into ditsets. The
generic structure of any partition σ is {os (σ) , ons (σ)}. The ditset dit (σ) is made up of three
disjoint sets of distinctions which are numbered as follows:

1. ∪C,C′∈os(σ)
C 6=C′

C × C ′ which might be symbolized as dit (os (σ) , os (σ));
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2. ∪ C∈os(σ)
C′∈ons(σ)

C × C ′ ∪ ∪ C∈os(σ)
C′∈ons(σ)

C ′ × C which might be symbolized as dit (os (σ) , ons (σ)); and

3. ∪C,C′∈ons(σ)
C 6=C′

C × C ′ which might be symbolized as dit (ons (σ) , ons (σ)).

These three sets of distinctions are disjoint and their union is dit (σ) which might be symbolized
as σ = 1 + 2 + 3. The only remaining distinctions are those that would be added when all the
non-singletons blocks of σ are atomized into singletons and they form the fourth set of distinctions
disjoint from the other three sets:

4. ∪C∈ons(σ)C × C −∆.

Together these four disjoint set of distinction exhaust all possible distinction so their union is
1U . When σ is co-negated to form −σ = {mos (σ) , sons (σ)}, then the set 1 is eliminated and the
set 4 is added on while the sets 2 and 3 remain so the ditset dit (−σ) of −σ is the union of the sets
2, 3, and 4 which is symbolized as: −σ = 2 + 3 + 4. The double co-negation −− σ of σ has the form
− − σ = {os (σ) ,mons (σ)}, so set 1 is added back and the sets 3 and 4 are eliminated which is
symbolized as −− σ = 1 + 2. All the partitions that can be formed from σ by the lattice operations
and co-negation will have two possible sets of blocks os (σ) or mos (σ) for the singletons and three
possible sets of blocks ons (σ), sons (σ), and mons (σ) so there are six possible partitions that can
be thus formed, and they are illustrated in Figure 3.1.

Figure 3.1: The Venn diagram for the six partitions formed from σ by ∨, ∧, and −.

Then the core + boundary result is simply that the union of the core ditsets 1 + 2 and the boundary
ditsets 2 + 3 is the ditset 1 + 2 + 3 for σ.
Table 7.3 lists the six partitions.

σ ∨ −σ = 1U
σ = 1 + 2 + 3
−σ = 2 + 3 + 4
−− σ = 1 + 2
σ ∧ −σ = 2 + 3
−σ ∧ −− σ = 2

Table 3.3: The six partitions formed from σ by ∨, ∧, and −.
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Recall that a partition σ is modular if it has at most one non-singleton and not just one singleton.
All co-negated partitions are modular and a partition σ 6= 0U is modular if and only if it equals its
double co-negation, σ = − − σ. By comparing the formulas in Table 7.3, we see that a partition is
modular if and only if the set of distinctions #3 is empty and #1 is not empty.

Since the refinement of partitions is just inclusion between ditsets, we immediately have the
refinements: − − σ - σ, σ ∧ −σ - σ,−σ (which also follows from the meet being the greatest
lower bound), and −σ ∧ − − σ is refined by the other five partitions. Since the ditset for the
join of two partitions is the union of the ditsets, we can represent the joins by just ‘adding the
numbers.’ For instance, that gives immediately; −σ ∨ − − σ = 1 + 2 + 3 + 4 = 1U = σ ∨ −σ
and − − σ ∨ (σ ∧ −σ) = 1 + 2 + 3 = σ. The ditset of the meet of two partitions is the interior of
the intersection of the two ditsets—which is the largest ditset contained in that intersection. The
intersection of two ditsets of partitions is a set of distinctions but not necessarily the ditset of a
partition. But in the case of the six partitions of Table 7.3, all the intersections, which will always be
just a sum of the numbered sets, are the ditsets of one of the six functions so they are closed under
meets. The co-negation of the double co-negation −−σ = {os (σ) ,mons (σ)} is {mos (σ) , sons (σ)}
so in terms of the numbered sets, the triple co-negation eliminates set 1 and adds the sets 3 and 4 so it
is the same as the single co-negation −σ. The co-negation − (σ ∧ −σ) of σ∧−σ = {mos (σ) , ons (σ)}
is 1U as will be proven just below using the strong DeMorgan law − (σ ∧ π) = −σ ∨ −π. And by
the same law, the co-negation − (−σ ∧ −− σ) = −− σ ∨−−−σ = −− σ ∨−σ = 1U . Thus the six
partitions are also closed under co-negation.

With two partitions, the first thing to check is DeMorgan’s laws for co-negation. For negation,
the ‘weak’DeMorgan law ¬ (σ ∨ π) = ¬σ ∧¬π holds but the ‘strong’law ¬ (σ ∧ π) = ¬σ ∨¬π fails.
But for co-negation, the weak law fails as shown by the counterexample of σ = {a, b, cd, ef} and
π = {a, bc, def}. Then σ ∨ π = {a, b, c, d, ef} and − (π ∨ σ) = {abcd, e, f}. On the RHS of the weak
law, −σ = {ab, c, d, e, f} and −π = 1U so:

−σ ∧ −π = −σ = {ab, c, d, e, f} 6= {abcd, e, f} = − (π ∨ σ).

To analyze the strong DeMorgan law, we need to develop some more of the standard forms for
co-negation with two partitions.

σ ∧ π = {os (σ) ∩ os (π) , ons (σ ∧ π)}
− (σ ∧ π) = {m [os (σ) ∩ os (π)] , sons (σ ∧ π)}
−σ ∨ −π = {mos (σ) ∩mos (π) , sons (σ) ∪ sons (π)} .

Then to prove the strong law, we first note that m (os (σ) ∩ os (π)) = mos (σ) ∩mos (π) since the
only singletons in σ ∧ π are the ones common to both partitions. Then to show sons (σ ∧ π) =
sons (σ)∪ sons (π), we note that the meet operation only expands any block so non-singleton blocks
remain non-singleton and thus the singletons sons (σ ∧ π) made from the non-singleton blocks of
σ ∨ π with be the same as sons (σ) ∪ sons (π) which completes the proof of the strong DeMorgan
law for co-negation:

− (σ ∧ π) = −σ ∨ −π.

Thus co-negation reverses the situation for negation with respect to the two DeMorgan laws.
In the co-Heyting context, Lawvere notes that the Leibniz law (e.g., for derivatives of products)

holds which in our case would be: ∂ (σ ∧ π) = (∂σ ∧ π) ∨ (σ ∧ ∂π). The simple proof of Leibniz’s
law in a co-Heyting algebra uses distributivity so one might expect it to be false for co-negation,
and indeed a counterexample is π = {a, b, c, def} so −π = {abc, d, e, f} and for σ = {a, b, d, cef},
then −σ = {abd, c, e, f}. Hence −σ ∨−π = {ab, c, d, e, f} and σ ∧π = {a, b, cdef}. Then the LHS is:
∂ (π ∧ σ) = {ab, cdef}. And ∂σ = σ ∧−σ = {abd, cef} so ∂σ ∧ π = {U} = 0U and ∂π = {abc, def}
so ∂π ∧ σ = {U} = 0U so the RHS is {U} = 0U and thus the Leibniz law fails for co-negation.
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3.3 Difference operation on partitions: Relativizing co-negation to π

In the primal structure, the negation ¬σ = σ ⇒ 0U was the partition representing the extent to
which "σ is the same as 0U", and the implication σ ⇒ π, obtained by relativizing the negation to π,
is the partition representing the extent to which "σ is refined by π" indicated in the Table 3.4. When
π = 0U , then "σ is refined by π” is the same as "σ is the same as 0U" since the only partition that
0U refines is itself (refinement being a partial order). The notation (σ ∨ π)B represents any block of
the join σ ∨ π containing part or all of B.

#1.If (σ ∨ π)B 6= B, then
(
π¬σ
)
B

= (σ ⇒ π)B = B

#2.If (σ ∨ π)B = B, then
(
π¬σ
)
B

= (σ ⇒ π)B = 1U � B

Table 3.4: Definition of the implication σ ⇒ π =
π¬σ as negation relativized to π.

In the dual structure, the co-negation −σ = 1U − σ is the partition representing the extent to
which "σ is different from 1U", and the co-implication or difference operation

π
−σ = π−σ, obtained

by relativizing the co-negation to π, is the partition representing the extent to which "σ is not refined
by π" indicated in Table 3.5 (where the notation (σ ∧ π)B represents the block of the meet σ ∧ π
containing the block B ∈ π).

#1.If (σ ∧ π)B 6= B, then
( π
−σ
)
B

= (π − σ)B = B

#2.If (σ ∧ π)B = B, then
( π
−σ
)
B

= (π − σ)B = 0U � B

Table 3.5: Definition of the difference operation π − σ =
π
−σ as co-negation relativized to π.

The dual structure defined by π lives in the lower segment [0U , π] of partitions refined by π.
If we treat the blocks B ∈ π as points in a universe set, then the lower segment is isomorphic to
Π (π) ∼= [0U , π] [28, p. 192] where π as a set of blocks plays the role of the universe set of points.
Hence the difference π − σ will be essentially like 1π − σ with the blocks B ∈ π playing the role of
the singletons {B} ∈ 1π. The two rules for determining π − σ can be restated as follows.

1. If (σ ∧ π)B 6= B, then the block of σ ∧ π containing B is larger than B (analogous to a block
of σ being a non-singleton in the case of 1U − σ), so that block of σ ∧ π is ‘atomized’into the
blocks B of π contained in the ‘non-singleton’block of σ ∧ π (analogous to a non-singleton
block of σ being atomized into singletons in 1U −σ except that the blocks of π are playing the
role of the singletons). That is, if (σ ∧ π)B 6= B, then the block of σ ∧ π containing B is larger
than B so B stays the same block in π − σ.

2. If (σ ∧ π)B = B, then B is an exact union of blocks C ∈ σ (and if σ - π, then B = C), and

then the B-slot
( π
−σ
)
B

= (π − σ)B in
π
−σ = π − σ is part of the union of such blocks from π,

to form the ‘π-modular’block of π − σ, analogous to the modular block when π = 1U . That
is, if (σ ∧ π)B = B, then B is an exact union of blocks C ∈ σ, then B joins into the π-modular
block of π − σ.

A partition σ is said to be π-modular if it is refined by π,has at most one block consisting of a
union of blocks of π, and does not just have one singleton block B, where the π-modular block (when
σ 6= π) is the block consisting of the union of two or more blocks of π. LetM [Π (π)] be the π-modular
partitions of [0U , π] with the refinement ordering. As in the case of 1U − σ, the partitions that are
not differences π − σ are the ones of the form µB = {B,∪B′∈π;B 6=B′B

′}. And, as before, if we start
with the setM [Π (π)] of all π-modular partitions and then add the new atoms µB and the artificial

coatoms {..., B∗, ...} and make the other corresponding changes so that {..., B∗, ...} = π−µB =
π
−µB ,

then we obtain a Boolean algebra anti-isomorphic to B (π).
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The difference, co-implication, or π-co-negation operation π − σ =
π
−σ creates a π-modular

partition in the lower segment [0U , π] of Π (U). If σ is not in that lower segment, then the π-co-
negation of σ ∧ π is the same as the π-co-negation of σ since only σ ∧ π occurs in rules #1 and #2.
In other words, π − σ = π − (σ ∧ π). For instance, if π = {a, b, cd, ef, gh} and σ = {abgh, cd, ef},
then π − σ =

π
−σ = {a, b, cdef, gh} since {abgh} is a union of blocks of π it is ‘atomized’into the

respective blocks of π as {a, b, gh} and since {cd, ef} are two singletons as blocks of π, they are
combined into the π-modular block cdef of π− σ. And σ ∧ π = {abgh, cd, ef} so that π− (σ ∧ π) =
π
− (σ ∧ π) = {a, b, cdef, gh} = π − σ.

For any σ ∈ [0U , π], the difference operation is like co-negation in the form 1π − σ (thinking
of the B ∈ π as if they were singletons) so the results for 1U − σ = −σ can be applied mutatis
mutandis. Thus for σ ∈ [0U , π], the law of excluded middle in [0U , π] takes the form of the partition

tautology: σ ∨
π
−σ = π.

The ditset analysis, developed above for co-negation, extends to π-co-negation. The π-co-negated
partition is in the lower segment [0U , π] so its ditset will always be contained in dit (π). Any σ ∈
[0U , π] will have the form of some original π-singletons oπs (σ) in the form B ∈ π and some original
π-non-singletons oπns (σ) in the form B ∪B′ ∪ ... so it has the form:

σ = {oπs (σ) , oπns (σ)}.

Then we apply the #1 and #2 rules to get:

π − σ =
π
−σ = {moπs (σ) , soπns (σ)}.

1 = dit (oπs (σ) , oπs (σ)) = ∪
B,B′∈oπs(σ)

B 6=B′
B ×B′

2 = dit (oπs (σ) , oπns (σ)) = ∪ B∈oπs(σ)
B′⊆C′∈oπns(σ)

B ×B′ ∪ ...

3 = dit (oπns (σ) , oπns (σ)) = ∪ B⊆C∈oπns(σ)
B′⊆C′∈oπns(σ),C 6=C′,B 6=B′

B ×B′

4 = ∪B,B′⊆C∈oπns(σ)
B 6=B′

B ×B′

Table 3.6: Ditset analysis for π-co-negation.

This is illustrated in Figure 3.2.
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Figure 3.2: Ditset analysis π-co-negations of a partition σ.

Hence we have the Table 3.7 ditset analysis of the π-negated elements that can be formed from
a single σ ∈ [0U , π].

σ ∨
π
−σ = σ ∨ (π − σ) = 1 + 2 + 3 + 4 = π

σ = 1 + 2 + 3
π
−σ = π − σ = 2 + 3 + 4

π
−

π
− σ = π − (π − σ) = 1 + 2

σ ∧
π
−σ = σ ∧ (π = σ) = 2 + 3

π
−σ ∧

π
−

π
− σ = 2

Table 3.7: Formulas generated by π-negation of σ where σ - π.

With π-negation, the partition σ ⇒ π is the partition indicating the extent to which "σ is refined
by π" so when it is totally true, we have refinement:

π¬σ = σ ⇒ π = 1U iff σ - π.

For π-co-negation, we have the dual result (which also holds in co-Heyting algebras [43]):

π
−σ = π − σ = 0U iff π - σ

since π− σ = 0U means for all B ∈ π, (σ ∧ π)B = B (the #2 rule above) so every B ∈ π is an exact
union of blocks C ∈ σ, i.e., π - σ. In terms of the interpretation, when π − σ = 0U so "π is not
refined by σ" is totally false, i.e., is a ‘contradiction’, then (by classical double negation), π - σ.
In that sense, showing that π − σ = 0U is like a proof by contradiction. The partition π − σ is the
partition representing the extent to which "π is not refined by σ" and when "π is not refined by σ"
is the contradiction 0U , then π is refined by σ, π - σ.

Since the π-negation takes any σ to a partition σ ⇒ π =
π¬σ refining π and the π-co-negation

takes any σ to a partition π − σ =
π
−σ refined by π, the mixed double negations take any σ to the

top or bottom depending on the order of the negations:

1U = (π − σ)⇒ π =
π¬
π
− σ

0U = π − (σ ⇒ π) =
π
−π¬σ.

Another partition equation that gives some of the meaning of difference-from-π as subtraction
is:

π ∨ σ = (π − σ) ∨ σ.

That is, to form π ∨ σ, you could take σ away from π and then join σ back to get the same result.
The partition join π ∨ σ is the partition formed by all the non-empty intersections B ∩C for B ∈ π
and C ∈ σ. The difference π − σ is formed using two rules. In the #2 rule, if (π ∧ σ)B = B, then B
is an exact union of some blocks C ∈ σ so B would be joined into the π-modular block of π−σ, but
then all the intersections of any C ∈ σ with that block would give the same B ∩ C as in π ∨ σ. In
the #1 rule, (π ∧ σ)B 6= B, then B is part of a larger block in the meet π ∧ σ, and thus B remains
as the block B in π − σ so the intersection B ∩ C is the same in both π ∨ σ and (π − σ) ∨ σ.
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A formula in lattice theory (with 0U and 1U ) is dualized by keeping the atomic variables the
same, interchanging join and meet, and interchanging 0U and 1U . Identities dualize into identities,
e.g., π ∨ (π ∧ σ) = π dualizes to π ∧ (π ∨ σ) = π. Dualization of formulas extends to the implication
and co-implication by dualizing σ ⇒ π to π − σ and vice-versa, but the relationship between a
formula involving the implications and its dual is more subtle.

This dualization should be distinguished from the complementary duality between partitions,
represented by partition relations on U×U , and equivalence relations on U×U . The complementary
dual of a statement about partitions is an equivalent statement about equivalence relations. The
lattice-theoretic dualization and the extension to implication and co-implication is not that sort of
rather trivial complementary duality. The dualization of a partition statement considered now is
a different statement about partitions, not just an equivalent restatement in terms of equivalence
relations.

A formula that equals 0U for any partitions substituted for the atomic variables and for any
U (|U | ≥ 2) is a partition contradiction, just as a formula that equals 1U for any substitution is a
partition tautology.

The proof that any partition tautology was also a subset (or truth-table) tautology used the
isomorphism ℘ (1) ∼= Π (2), and the same proof strategy shows that any partition contradiction is
also a subset or truth-table contradiction (i.e., the negation of a tautology). The subset operation
that corresponds to the partition difference or co-implication operation π−σ is the subset difference
S−T = S∩T c or in terms of propositional variables, π∧¬σ. The set U = 2 = {0, 1} allows only two
partitions in Π (2), namely 0U = {{0, 1}} and 1U = {{0} , {1}}. In the isomorphism ℘ (1) ∼= Π (2)
between the two-element Boolean algebra and the partition algebra on the two-element set 2, the
partition difference operation on 0U and 1U are isomorphic to the Boolean operations on zero and
one of ℘ (1) as indicated in the following truth-table Table 7.8 (the the zeros and ones are interpreted
as 0U and 1U , or as 0, 1 ∈ U as the case may be).

π σ π − σ π ∧ ¬σ
1 1 0 0
1 0 1 1
0 1 0 0
0 0 0 0

Table 3.8: Partition operation π − σ in Π (2) same as Boolean operation π ∧ ¬σ in ℘ (1).

Since the other partition operations and Boolean operations are isomorphic in ℘ (1) ∼= Π (2), any
partition contradiction has to hold for U = 2, and thus the corresponding Boolean formula is also a
contradiction so all partition contradictions are also Boolean contradictions.

The dual to the partition tautology of modus ponens [σ ∧ (σ ⇒ π)] ⇒ π is the formula: π −
[σ ∨ (π − σ)]. But σ ∨ (π − σ) = σ ∨ π and π - σ ∨ π for any π and σ, so we have:

π¬
(
σ ∧ π¬σ

)
= [σ ∧ (σ ⇒ π)]⇒ π = 1U

π
−
(
σ ∨

π
−σ
)

= π − [σ ∨ (π − σ)] = 0U

which are the π-relativizations of:

¬ (σ ∧ ¬σ) = (σ ∧ (σ ⇒ 0U ))⇒ 0U = 1U

− (σ ∨ −σ) = 1U − [σ ∨ (1U − σ)] = 0U .

Modus ponens is a case where the dual of a partition tautology is a partition contradiction that is
a different statement about partitions. Note that if a partition tautology has its main connective as an
implication, then there is a trivial restatement as a contradiction using co-implication since both are
equivalent to a certain refinement relation. Thus the modus ponens formula [σ ∧ (σ ⇒ π)]⇒ π = 1U
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is equivalent to [σ ∧ (σ ⇒ π)] - π which in turn is equivalent to [σ ∧ (σ ⇒ π)] − π = 0U , but that
trivial restatement is not the dualization contradiction: π − [σ ∨ (π − σ)] = 0U .

There are many promising cases where identities dualize to identities. For instance, in the primal
structure, the ‘weak’DeMorgan law ¬ (σ ∨ τ) = ¬σ∧¬τ holds, and its dual, the ‘strong’DeMorgan
law, holds in the dual structure:

¬ (σ ∨ τ) = ¬σ ∧ ¬τ
− (σ ∧ τ) = −σ ∨ −τ .

If Φ is a formula in the primal structure (∨, ∧, ⇒, 0U , and 1U ), then let ϕ (Φ) be the dual
formula in the dual structure (∨, ∧, −, 0U , and 1U ). It is tempting to conjecture that the lattice
theoretic dualization extends to implication and co-implication, i.e., to conjecture that: Φ is a par-
tition tautology iff ϕ (Φ) is a partition contradiction. However, that is not true. There at least two
special aspects of implication in the primal structure that are not mirrored in the dual structure so
the implication, if Φ is a partition tautology, then ϕ (Φ) is a partition contradiction, does not hold.

One special aspect is the way that partial refinement is exemplified in the two structures. In the
primal structure, and implication σ ⇒ π indicated partial refinement when B ⊆ C and then B is
atomized into singletons in σ ⇒ π. In the partition tautology

π¬σ ∨ π¬π¬σ (the weak law of excluded
middle), there is a set of singletons in

π¬σ and a complementary set of singletons in π¬π¬σ so the join is
all singletons, i.e., 1U . But in the dual structure, partial refinement in π−σ is indicated by B = ∪C
being added to the modular block of π − σ. In the dual formula, ϕ

(
π¬σ ∨ π¬π¬σ

)
=

π
−σ ∧

π
−

π
− σ, the

modular blocks will be complementary but their meet does not give 0U . Taking the simple case of
π = 1U , and σ = {a, b, cd}, 1U−σ = −σ = {ab, c, d}, −−σ = {a, b, cd}, and −σ∧−−σ = {ab, cd} 6=
0U .

Another special aspect of the primal structure (due to the Common Dits Theorem), is the
‘extremism’of negation, i.e., ¬σ = σ ⇒ 0U is either 1U (when σ = 0U ) or 0U otherwise. Consider
the partition tautology, ¬σ ⇒ (σ ⇒ π), which is the classical "reductio" that a contradiction implies
anything. The reductio is a partition tautology since if σ 6= 0U , then ¬σ = σ ⇒ 0U = 0U so the
whole expression is 0U ⇒ (σ ⇒ π) = 1U , and if σ = 0U , then σ ⇒ π = 1U so the whole expression
is also 1U . The dual formula is, (π − σ) − (1U − σ), so consider the case where π = {abe, cd}
and σ = {a, b, c, de} so that σ ∧ π = 0U and thus π − σ = π while 1U − σ = {abc, d, e}. Then
(π − σ)− (1U − σ) = π − (1U − σ) = π 6= 0U since π ∧ (1U − σ) = 0U .

The opposite conjecture, if a formula Φ in the dual structure is a partition contradiction, then
the formula ϕ−1 (Φ) in the primal structure is a partition tautology, is still open.

4 The (quantum) logic of vector-space partitions

4.1 Linearization from sets to vector spaces

The logic of (set) partitions is dual to the usual logic of subsets (usually presented in the special case
of propositional logic) in the sense of the category-theoretic duality between partitions and subsets.8

The usual quantum logic [5] first generalizes from the set notion of a subset to the corresponding
vector-space notion of a subspace and then specializes the vector spaces to those used in quantum
mechanics. Our purpose is to present the dual quantum logic by first generalizing the set notion of
a partition to the corresponding vector-space notion, and then specialize to the (finite-dimensional)
vector spaces of quantum mechanics. But what is the vector-space notion corresponding to the set
notion of partition?

8As Gian-Carlo Rota put it: “categorically speaking, the Boolean σ-algebra of events and the lattice Σ of all
Boolean σ-subalgebras are dual notions" [47, p. 65] using the characterization of partitions by Boolean subalgbras
[33, p. 43] that goes back to Ore [41]. The category theorist, F. William Lawvere, called subobjects “parts”and then
noted that: “The dual notion (obtained by reversing the arrows) of ‘part’is the notion of partition.” [36, p. 85]
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There is a ‘semi-algorithmic’procedure to generalize set concepts to the corresponding vector-
space notions that we will call linearization. Gian-Carlo Rota might call this procedure a "yoga"
[46, p. 251]. The basic idea is simple.

Yoga of Linearization: Take a basis set of a vector space V (over a field K) and apply to that
basis set any set notion, and then whatever is generated in the vector space is the corresponding
vector-space notion.

The set notion of cardinality applied to a basis set generates the notion of dimension. The
set notion of a subset applied to a basis set generates the notion of a subspace. The set notion
of a partition applied to a basis set generates the notion of a direct-sum decomposition. If the set
partition of the basis set is the inverse image of a numerical attribute9 f : U → K, then it generates
the notion of a (diagonalizable = there is a basis set of eigenvectors) linear operator F : V → V
defined by Fu = f (u)u linearly extended to the whole space. For r ∈ K in the image f (U) ⊆ K,
the inverse image f−1 (r) is a constant subset of U . If for S ⊆ U , we let rS stand for defining a
function having the value r on the elements of S, then the numerical attribute f : U → K satisfies
f
(
f−1 (r)

)
= rf−1 (r) and similarly for any subset S ⊆ f−1 (r), f (S) = rS. Then the equation

characterizing the constant sets of f is f (S) = rS for some r ∈ K, and the vector-space version is
the eigenvector equation Fv = λv for some λ ∈ K. The set of constant r-sets of f is the powerset
℘
(
f−1 (r)

)
for some r ∈ f (U), and the corresponding space of eigenvectors of F for some eigenvalue

λ is the eigenspace Vλ associated with λ. Starting with a diagonalizable linear operator F : V → V ,
the numerical attribute f : U → K reappears as the eigenvalue function on a basis of eigenvectors.
Given two vector spaces V and V ′ over K with basis sets U and U ′, the set notion of the direct
or Cartesian product U × U ′ generates the notion of the tensor product V ⊗ V ′ generated by the
ordered pairs (u, u′) ∈ U × U ′ written as u⊗ u′. These results are summarized in Table 4.1.10

Set concept Vector-space concept

Universe set U Basis set of a space V
Cardinality of a set U Dimension of a space V
Subset of a set U Subspace of a space V
Partition of a set U Direct-sum decomposition of a space V

Numerical attribute f : U → K Diagonalizable linear op. F : V → V
Value r in image f (U) of f Eigenvalue λ of F

Constant set S of f Eigenvector v of F
Set of constant r-sets ℘

(
f−1 (r)

)
Eigenspace Vλ of λ

Direct product of sets Tensor product of spaces
Elements (u, u′) of U × U ′ Basis vectors u⊗ u′ of V ⊗ V ′

Table 4.1: Linearization of set concepts to corresponding vector-space concepts.

The usual notion of logic is the Boolean logic of subsets (ordinarily represented in the special
case of propositional logic) and since subsets linearize to subspaces, the usual quantum logic [5] is
the logic of subspaces of a vector space specialized to the Hilbert spaces of quantum mechanics.
Since set partitions are category-theoretic duals to subsets, we have presented the dual logic of set
partitions above, and the corresponding quantum logic is the logic of direct-sum decompositions
[19] of a vector space specialized to the Hilbert spaces of quantum mechanics. The general logic of
direct-sum decompositions (i.e., vector space partitions) is the subject of this chapter with some
specializations to the quantum case.

9A attribute or property might be said to hold or not hold of an element in a set, but a numerical attribute, like
height, weight, or age, assigns a numerical value to each element of a set. And an attribute can be considered as a
numerical attribute with possible values 0, 1 ∈ 2.
10Since set-concepts can be formulated in vector spaces over Z2, the vector-space concepts of QM over C can be

scaled back to Z2 in an appropriate way to create a pedagogical or ‘toy’model of QM over Z2, i.e., quantum mechanics
over sets [17].
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4.2 Direct-Sum Decompositions

Let V be a finite-dimensional vector space over a field K. Intuitively, a direct-sum decomposition
(DSD) of V is a set of non-zero subspaces {Vi}i∈I of V such that every vector v ∈ V can be uniquely
expressed as a sum v =

∑
i∈I vi where vi ∈ Vi. We have seen how the notion of a set partition

linearizes to the notion of a DSD when a set partition on a set U is usually defined as a set of non-
empty subsets or blocks {Bi}i∈I such that the blocks are mutually disjoint and jointly exhaustive
(i.e., whose union is U). But it might be noted that a set partition could be equivalently defined as
a ‘delinearized’DSD. That is, a set partition is a set of non-empty subsets {Bi}i∈I of U such that
every non-empty subset S ⊆ U can be uniquely expressed as the union of subsets of the Bi (e.g., the
projections S ∩Bi) for i ∈ I. For a spectrum of values r1, ..., rm, for f : U → R with Bi = f−1 (ri),
the unique decomposition of S ⊆ U is illustrated in Figure 4.1.

Figure 4.1: Decomposition of S ⊆ U in terms of the constant sets of f : U → R.

Every self-adjoint (or Hermitian) operator in a Hilbert space, or, more generally, any diagonal-
izable operator V → V determines the DSD of its eigenspaces Vi consisting of the eigenvectors vi
for an eigenvector λi. But the notion of a DSD makes sense independently of diagonalizable linear
operators and their eigenspaces. For instance, in the pedagogical model of "QM over sets" [17], the
vector space is Zn2 , and the only linear operators Zn2 → Zn2 are the projection operators to a subspace
and their DSDs of eigenspaces are always binary corresponding to the two possible eigenvalues of
1, 0 ∈ Z2. But there can be DSDs of any cardinality (≤ n) determined by (say) real-valued numerical
attributes on a basis set. Let U = {u1, ..., un} be a basis set for Zn2 (so each vector in Zn2 ‘is’just a
subset S ⊆ U) and let f : U → R be a numerical attribute on U (where the values of the attribute
are not in the base field Z2). Then there is the DSD of subspaces ℘

(
f−1 (r)

)
of the constant sets

(or ‘eigenvectors’) f (S) = rS for S ⊆ U and r a value (or ‘eigenvalue’) in the image (or ‘spectrum’)
f (U) ⊆ R. As the base field is increased up to the complex numbers, then all real-valued observables
can be “internalized”as self-adjoint operators taking values in the base field.

Let DSD (V ) be the set of DSDs on the vector space V . It is also convenient to think of DSDs
as just vector-space partitions with the subspaces Vi as the blocks in the partition. Then it is easily
seen that there is a natural refinement partial order on the vector-space partitions on a vector space
V , That is, if π = {Vi}i∈I and σ = {Wj}j∈J , then σ is refined by π, σ - π, if for every Vi ∈ π, there
is a Wj ∈ σ such that Vi ⊆ Wj—so that DSD (V ) becomes a partially ordered set. The partially
ordered set has a bottom element, namely the indiscrete DSD 0 = {V } (nicknames ‘the blob’)—but
no unique top element since each different basis set will determine a different DSD of one-dimensional
subspaces generated by the basis set.

4.3 Compatibility of DSDs

For our proofs, a more rigorous definition of a DSD or vector-space partition is:
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Definition 18 Let V be a finite dimensional vector space over a field K. A direct sum decomposition
(DSD) of V is a set of subspaces {Vi}i∈I such that Vi ∩

∑
i′ 6=i Vi′ = {0} (the zero space) for i ∈ I

and which span the space, i.e., in terms of direct sums, ⊕i∈IVi = V .

To fix notation, the following are arbitrary DSDs: π = {Vi}i∈I , σ = {Wj}j∈J , and τ = {Xk}k∈K of
V .

In the logic of (set) partitions, we had the luxury of assuming a fixed universe set U , but with
vector-space partitions, there are many different basis sets so we have to deal with the problem of
incompatibility (or non-commutativity) of DSDs. When the DSDs are generated by linear operators,
this is the non-commutativity of operators, but we are dealing with DSD’s without assuming any
corresponding operators. Intuitively, a diagonalizable linear operator is determined by a DSD plus
an eigenvalue in the base field for each distinct subspace in the DSD. But the most important
thing about eigenvalues is not their actual values but when they are the same or different, and that
information is conveyed by the DSDs. Hence we need to define compatibility and incompatibility
between DSDs to correspond to the usual distinction between commutativity and non-commutativity
of operators.

Given two DSDs π = {Vi}i∈I and σ = {Wj}j∈J , their proto-join π ∨ σ is the set of non-zero
subspaces {Vi ∩Wj |Vi ∩Wj 6= {0}}(i,j)∈I×J . The proto-join π∨σ is not necessarily a DSD. The space
spanned by the proto-join is denoted SE . If the two DSDs π and σ were defined as the eigenspace
DSDs of two diagonalizable operators, then the space SE spanned by the proto-join would be the
space spanned by the simultaneous eigenvectors of the two operators (and hence the notation SE).

Proposition 16 Let F,G : V → V be two diagonalizable linear operators on a finite dimensional
vector space V . Then SE is the kernel of the commutator: SE = ker ([F,G]) = ker (FG−GF ).

Proof: Let v be any simultaneous eigenvector of the operators, i.e., Fv = λv and Gv = µv.
Then [F,G] (v) = (FG−GF ) (v) = (λµ− µλ) v = 0 so the space SE spanned by the simultaneous
eigenvectors is contained in the kernel ker ([F,G]), i.e., SE ⊆ ker ([F,G]). Conversely, if we restrict the
two operators to the subspace ker ([F,G]), then the restricted operators commute on that subspace.
Then it is a standard theorem of linear algebra [29, p. 177] that the subspace ker ([F,G]) is spanned
by simultaneous eigenvectors of the two restricted operators. But if a vector is a simultaneous
eigenvector for the two operators restricted to a subspace, they are the same for the operators on
the whole space V , since the two conditions Fv = λv and Gv = µv only involves a vector in the
subspace. Hence ker ([F,G]) ⊆ SE . �

The operators commute if the commutator [F,G] is the zero operator, i.e., [F,G] v = FG−GF =
0 for any v ∈ V , so the kernel of the commutator is the whole space V . The commutativity definitions
for two DSDs π and σ without using operators are:

Definition 19 π, σ commute or are compatible, denoted π ↔ σ, if their proto-join π ∨ σ spans the
whole space, i.e., SE =V .

When two DSDs π and σ are compatible, π ↔ σ, their proto-join is the join DSD:

π ∨ σ = {Vi ∩Wj |Vi ∩Wj 6= {0}}(i,j)∈I×J

Join of DSDs when π ↔ σ.

When the proto-join π ∨ σ is the join so that π ∨ σ is a DSD, then it is clear from the refinement
partial ordering of DSDs that π ∨ σ is the join in the sense of the least upper bound on π and σ.
Since the subspaces in the join of any DSD π with the indiscrete DSD 0 are just the subspaces of
π, their proto-join is a join and:

π ∨ 0 = π.
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Moreover this means that the indiscrete DSD is compatible with all DSDs, i.e., for any DSD π:

0↔ π.

A set of partitions on a set U might be said to be complete if their join is the discrete partition 1U
whose blocks are singletons. Similarly, in a vector space, a set of compatible (or commuting) DSDs is
said to be complete is their join is a DSD of one dimensional subspaces. In terms of operators, this is
Dirac’s Complete Set of Commuting Operators or CSCO [12]. Then the simultaneous ‘eigenvector’
determined by each one-dimensional intersection can be characterized by the sequence of ‘eigenvalues’
it had in each DSD of the complete set.

Compatibility defines a binary relation on DSD (V ) that is clearly reflexive and symmetric. The
relation cannot be transitive since 0 is compatible with all DSDs and then π ↔ 0↔ σ would imply
that all DSDs are compatible (see below for counterexamples)—so compatibility is not an equivalence
relation. The join operation preserves compatibility, i.e., if π ↔ σ, then π ↔ π ∨ σ ↔ σ. The
important thing is that if a set of three DSDs are mutually compatible, then their three-way join is
a DSD. To prove that, we need a Lemma.

Lemma 20 Let the DSDs π = {Vi}i∈I and σ = {Wj}j∈J be compatible so that π ∨ σ is a DSD and
thus any v ∈ V has a unique expression v =

∑
(i,j)∈I×J vij where vij ∈ Vi ∩Wj. Let vi =

∑
j∈J vij

so that vi ∈ Vi and then v =
∑
i∈I vi. If v ∈ Vi, then v = vi.

Proof : Let v̂i =
∑
i′∈I,i′ 6=i vi′ so that v = vi + v̂i. Hence if v ∈ Vi, then v − vi = v̂i ∈ Vi. Since

v̂i ∈ ⊕i′∈I,i′ 6=iVi′ , v̂i ∈ Vi ∩ ⊕i′∈I,i′ 6=iVi′ so v̂i = 0 since π = {Vi}i∈I is a DSD which implies
Vi ∩ ⊕i′∈I,i′ 6=iVi′ = {0}. If v̂i = 0, then v = vi.�

Theorem 21 Given three DSDs, π = {Vi}i∈I , σ = {Wj}j∈J , and τ = {Xk}k∈K that are mutually
compatible, i.e., π ↔ σ, π ↔ τ , and σ ↔ τ , then (π ∨ σ)↔ τ and equivalently , π ↔ σ ∨ τ and thus
π ∨ σ ∨ τ is a DSD.

Proof : We need to prove π ∨ σ ↔ τ or equivalently π ↔ σ ∨ τ , i.e., that

⊕(i,j,k)∈I×J×K ((Vi ∩Wj) ∩Xk) = ⊕(i,j,k)∈I×J×K (Vi ∩ (Wj ∩Xk)) = V .

Consider any nonzero v ∈ V where since π ↔ σ, there are vij ∈ Vi ∩ Wj for each i ∈ I and
j ∈ J such that v =

∑
(i,j)∈I×J vij . Consider any such nonzero vij . Now since π ↔ τ , there are

vij,i′k ∈ Vi′ ∩Xk for each i′ ∈ I and k ∈ K such that vij =
∑

(i′,k)∈I×K vij,i′k. But since vij ∈ Vi,
by the Lemma, only vij,ik is nonzero, so vij =

∑
k∈K vij,ik. Symmetrically, since σ ↔ τ , there are

vij,j′k ∈Wj′ ∩Xk for each j′ ∈ J and k ∈ K such that vij =
∑

(j′,k)∈J×K vij,j′k. But since vij ∈Wj ,
by the Lemma, only vij,jk is nonzero, so vij =

∑
k∈K vij,jk. Now since {Xk}k∈K is a DSD, there is a

unique expression for vij =
∑
k∈K vijk where vijk ∈ Xk. Hence by uniqueness: vijk = vij,ik = vij,jk.

But since vij,ik ∈ Vi and vij,jk ∈ Wj and vij,ik = vijk = vij,jk, we have vijk ∈ Vi ∩ Wj ∩ Xk.
Thus v =

∑
(i,j)∈I×J vij =

∑
(i,j)∈I×J

∑
k∈K vijk =

∑
(i,j,k)∈I×J×K vijk. Since v was arbitrary,

⊕(i,j,k)∈I×J×K (Vi ∩Wj ∩Xk) = V , so π ∨ σ ∨ τ is a DSD.�

Definition 22 π, σ are incompatible if SE 6=V ; and

Definition 23 π, σ are conjugate if SE = {∅}.

4.4 Examples of compatibility, incompatibility, and conjugacy

Example of incompatibility (or non-commutativity). To illustrate these concepts, it suffi ces to take
the simplest case of a vector space over Z2. Consider the 23 = 8-element vector space Z3

2 with a
standard computational basis {e1, e2, e3} where the vectors may be represented as column vectors;
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e1 =

1
0
0

, e2 =

0
1
0

, and e3 =

0
0
1

.
An alternative basis is:

a1 =

1
1
0

, a2 =

0
1
1

, and a3 =

1
1
1

.
The ai form a basis since a1 + a3 = e3 (remember that 1 + 1 = 0 in Z2), a2 + a3 = e1, and
a1 + a2 + a3 = e2. To define a DSD, all we need is a numerical attribute defined on a basis set.
Consider f : U = {e1, e2, e3} → R defined by: f (e1) = 1 and f (e2) = f (e3) = 17 (the values don’t
matter; all that matters is when they are the same or different). Let g : U ′ = {a1, a2, a3} → R
be defined by: g (a1) = g (a2) = 2 and g (a3) = 5. Then f defines a DSD π with two blocks:
f−1 (1) = {e1} which generates the subspace

[
f−1 (1)

]
= {0, e1} (where the square brackets [S]

indicate the subspace generated by the vectors in S) and f−1 (17) = {e2, e3} with generates the
subspace

[
f−1 (17)

]
= {0, e2, e3, e2 + e3}. Note that in terms of subset of the basis set {e1, e2, e3},

the subspaces generated by the inverse images are just the powersets: ℘
(
f−1 (1)

)
= {∅, {e1}} and

℘
(
f−1 (17)

)
= {∅, {e2} , {e3} , {e2, e3}}. The other numerical attribute g defines another DSD σ

with two blocks: g−1 (2) = {a1, a2} which generates the subspace
[
g−1 (2)

]
= {0, a1, a2, a1 + a2}

and g−1 (5) = {a3} which generates the subspace
[
g−1 (5)

]
= {0, a3}. Then the direct-sums are the

whole space:
[
f−1 (1)

]
⊕
[
f−1 (17)

]
= Z3

2 =
[
g−1 (2)

]
⊕
[
g−1 (5)

]
. To compute the proto-join of the

two DSDs, we need to express the vectors spaces in the same (computational) basis so:
[
g−1 (2)

]
=

{0, a1, a2, a1 + a2} = {0, e1 + e2, e2 + e3, e1 + e3} and
[
g−1 (5)

]
= {0, a3} = {0, e1 + e2 + e3}. Since

there are two blocks in each DSD π and σ, there are four possible non-zero intersections in the
proto-join π ∨ σ, but the only non-zero intersection is the subspace generated by the intersection of[
f−1 (17)

]
and

[
g−1 (2)

]
:[

f−1 (17)
]
∩
[
g−1 (2)

]
= {0, e2, e3, e2 + e3} ∩ {0, e1 + e2, e2 + e3, e1 + e3} = {0, e2 + e3}.

Since the simultaneous ‘eigenvector’space SE = {0, e2 + e3} is neither V = Z3
2 nor the zero space,

π and σ are incompatible but not conjugate.
Example of compatibility. Let U and f be the same as above but consider the basis: b1 = e1,

b2 = e2, and b3 = e2 + e3. Let g : U ′′ = {b1, b2, b3} → R where g (b1) = 1, g (b2) = 2, and g (b3) = 3
so the three subspaces in the DSD σ are

[
g−1 (1)

]
= {0, b1} = {0, e1},

[
g−1 (2)

]
= {0, b2} = {0, e2},

and
[
g−1 (3)

]
= {0, b3} = {0, e2 + e3}. There are six subspaces determined by the intersections of

the two subspaces given by f and the three given by g, but the only non-zero intersections are:

{0, e1}, {0, e2}, and {0, e2 + e3} .

These three subspaces span the whole space so SE =V , and π and σ are compatible. Each of these
‘eigenspaces’is one-dimensional so the DSDs π and σ given by f and g are a complete set of DSDs and
the simultaneous ‘eigenvectors’in the one-dimensional blocks can be characterized by the sequence
of ‘eigenvalues’, i.e., e1 = |1, 1〉, e2 = |17, 2〉, and e2 + e3 = |17, 3〉, when the DSDs are determined
by numerical attributes to attach ‘eigenvalues’to the subspaces in the DSDs.

Example of conjugacy. For a standard example of conjugacy, we need to work in Zn2 where n
is even so consider Z4

2 with the computational basis U = {e1, ..., e4}. Let Û = {ê1, ..., ê4} where
êi is the vector formed by excluding ei from the sum

∑4
j=1 ej . These four vectors form a basis set

for Z4
2—while the corresponding set of vectors for n odd do not form a basis. Let f : U → R be

defined by f (e1) = f (e2) = 1 and f (e3) = f (e4) = 0 so the two subspaces in π are
[
f−1 (1)

]
=

{0, e1, e2, e1 + e2} and
[
f−1 (0)

]
= {0, e3, e4, e3 + e4}. Let g : Û → R be given by g (ê2) = g (ê3) = 1

and g (ê1) = g (ê4) = 1 so that the two subspaces in σ are:
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[
g−1 (1)

]
= {0, ê2, ê3, ê2 + ê3} = {0, e1 + e3 + e4, e1 + e2 + e4, e2 + e3},[

g−1 (0)
]

= {0, ê1, ê4, ê1 + ê4} = {0, e2 + e3 + e4, e1 + e2 + e3, e1 + e4}.

Then it is easily checked that the four intersections of subspaces in the proto-join π ∨ σ are all the
zero space {0}, e.g., f and g have no simultaneous ‘eigenvectors’, so π and σ are conjugate.

Since the two numerical attributes in the conjugacy example are characteristic functions taking
value in the base field Z2, they define linear operators F and G on Z4

2 and thus we can compute
their commutator [F,G] = FG−GF as usual once restated in the computational basis. The matrix
to convert a 0, 1-vector written in the Û -basis to the same 0, 1-vector written in the U -basis is:

CU←Û =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

.
For instance, e1 = ê2 + ê3 + ê4 so that vector in Û -basis is the column vector [0, 1, 1, 1]

t (t represents
the transpose) and 

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




0
1
1
1

 mod(2)
=


1
0
0
0


which is e1 in the U -basis. The inverse to the conversion matrix CU←Û is:

CÛ←U =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


so the conversion matrix is its own inverse. The numerical attribute f now defines a linear operator
F : Z4

2 → Z4
2 given by Fe1 = 1e1 land Fe2 = 1e2 as well as Fe3 = 0e3 and Fe4 = 0e4 both of which

are the zero vector 0.The numerical attribute g also defines a linear operator G : Z4
2 → Z4

2 given by
Gê2 = 1ê2 and Gê3 = 1ê3 as well as Gê1 = 0ê1 and Gê4 = 0ê4 both of which are the vector 0. We
need to convert the matrix for the operator G defined in the Û -basis into the U -basis in order to
commute the commutator of the two operators. The matrix representation of the G operator in the
Û -basis is just the projection operator P1 to the subspace

[
g−1 (1)

]
= {0, ê2, ê3, ê2 + ê3} associated

with the eigenvalue 1. The conversion of that matrix to the U -basis is accomplished by pre- and
post- multiplying by the appropriate conversion matrices:

CU←ÛP1CÛ←U

=


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


=


2 1 1 2
1 1 0 1
1 0 1 1
2 1 1 2

 mod(2)
=


0 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

.
The matrix representing the F : Z4

2 → Z4
2 in the U -basis is the projection matrix:
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
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


and the commutator in terms of the operators is [F,G] = FG−GF , so it is computed in the U -basis
as: 

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




0 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

−


0 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


=


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 mod(2)
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

.
The resulting matrix, representing the commutator operator FG−GF , has a determinant of 1 so it
is a non-singular transformation with a kernel of the zero space {0}. Hence the definition of π and
σ being conjugate agrees with the kernel of the commutator [F,G] = FG − GF : Z4

2 → Z4
2 being

the zero space when the numerical attributes f and g define operators F,G : Z4
2 → Z4

2. All these
examples illustrate general aspects of DSDs with no restriction to Hilbert spaces. In fact, by using
vector spaces over Z2 instead of C, all the examples are from the pedagogical model of "quantum
mechanics over sets" [17] since vectors in Zn2 can be interpreted as subsets of an n-element set,
and the different n-element basis sets allows the introduction of the notions on commutativity and
non-commutativity that are important in QM over C.

4.5 The meet of DSDs and properties of refinement

The meet of two set partitions π = {Bi}i∈I and σ = {Cj}j∈J was defined as the set partition π ∧ σ
whose blocks are a union of some π-blocks and also a union of some σ-blocks, and those blocks are
minimal in that regard. The meet of two vector-space partitions or DSDs is just the vector space
version of the set definition

Definition 24 For any two DSDs π = {Vi}i∈I and σ = {Wj}j∈J , the meet π ∧ σ is the DSD
whose subspaces are direct sums of subspaces from π and the direct sum of subspaces from σ and are
minimal subspaces in that regard. That is, {Yl}l∈L is the meet if there is a set partition {Il}l∈L on
I and a set partition {Jl}l∈L on J such that for all l ∈ L: Yl = ⊕i∈IlVi = ⊕j∈JlWj and that holds
for no more refined partitions on the index sets.

Note that for the blob 0 = {V }, V = ⊕i∈IVi = ⊕j∈JWj using the blob set partitions {I} and
{J}, but in general the meet π ∧ σ will use more refined partitions on I and J . Thus 0 is always a
lower bound on π and σ, and we show below that π ∧ σ least such lower bound.

Proposition 17 If π ↔ τ or σ ↔ τ , then π ∧ σ ↔ τ .

Proof : Suppose that π ↔ τ so that {Vi ∩Xk}(i,k)∈I×K is a DSD, i.e., ⊕(i,k)∈I×K {Vi ∩Xk} = V .
The blocks of π ∧ σ for Yl = ⊕i∈IlVi = ⊕j∈JlWj . To show that π ∧ σ ↔ τ , we need to show
that {Yl ∩Xk}(l,k)∈L×K spans the whole space V , i.e., ⊕(l,k)∈L×KYl ∩ Xk = V . Now Yl ∩ Xk =

(⊕i∈IlVi) ∩ Xk and since π ↔ τ , {Vi ∩Xk}(i,k)∈I×K is a DSD, so Vi = ⊕k∈KVi ∩ Xk and then
Yl ∩ Xk = (⊕i∈IlVi) ∩ Xk = (⊕(i,k′)∈Il×KVi ∩ Xk′) ∩ Xk [31, p. 30]. But the intersection between
(⊕(i,k′)∈Il×KVi ∩Xk′) and Xk is Vi ∩Xk since no non-zero vector in (⊕(i,k′)∈Il×K,k′ 6=kVi ∩Xk′) can
be in Xk. Thus Yl ∩Xk = ⊕i∈IlVi ∩Xk and
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⊕(l,k)∈L×KYl ∩Xk = ⊕(l,k)∈L×K ⊕i∈Il Vi ∩Xk = ⊕(i,k)∈I×K {Vi ∩Xk} = V

which is a DSD since π ↔ τ . If σ ↔ τ , the proof is symmetrical. �
“The Blob”absorbs everything it meets (as in the old movie of the same title):

0 ∧ π = 0.

It may be recalled that the refinement partial order on DSDs is defined just like the refinement
partial order on partitions but with the subspaces of the DSD replacing the subsets or blocks of the
partition. In the partition refinement σ - π, we have for each block C ∈ σ, C = ∪{B ∈ π : B ⊆ C}.
The same holds for vector-space partitions.

Lemma 25 If σ � π, then each subspace Wj ∈ σ, Wj = ⊕{Vi ∈ π : Vi ⊆Wj}.

Proof : Consider any nonzero vector v ∈Wj . Since π is a DSD, v =
∑
i∈I vi where vi ∈ Vi so we can

divide v into two parts: v =
∑
Vi⊆Wj

vi+
∑
Vi′*Wj

vi′ . Now σ � π, so for each vi′ ∈ Vi′ *Wj , there is
aWj′ such that vi′ ∈ Vi′ ⊆Wj′ so

∑
Vi′*Wj

vi′ ∈
∑
j′ 6=jWj′ . But

∑
Vi′*Wj

vi′ = v−
∑
Vi⊆Wj

vi ∈Wj

and Wj ∩
∑
j′ 6=jWj′ = {0} since σ is a DSD. Thus v −

∑
Vi⊆Wj

vi = 0 so v ∈ ⊕{Vi ∈ π : Vi ⊆Wj}.
�

Then σ � π implies π ↔ σ and π ∨ σ = π as well as π ∧ σ = σ as expected.

Proposition 18 For any two DSDs π and σ, if they a common upper bound τ , i.e., π, σ � τ , then
(i) π ↔ σ, and (ii) the join π ∨ σ is defined which is the least upper bound of π and σ.

Proof : Since π, σ � τ = {Xk}k∈K , then for each Xk, there is a Vi ∈ π such that Xk ⊆ Vi and there
is a Wj ∈ σ such that Xk ⊆ Wj so Xk ⊆ Vi ∩Wj . Since the {Xk}k∈K span the space so must the
nonzero Vi∩Wj so π ↔ σ which proves (i) and makes π∨σ = {Vi ∩Wj 6= {0}}(i,j)∈I×J into a DSD.
To prove (ii), as just shown, for any given Xk, there is a Vi and Wj such that Xk ⊆ Vi ∩Wj so π∨σ
is the least upper bound of π and σ in the refinement partial order. �

Unlike set partitions on the same set, two DSDs π and σ need not have a common upper bound
so DSD (V ) is not a join-semilattice.

Lemma 26 Given a DSD π = {Vi}i∈I , let X = ⊕i∈IXVi and Y = ⊕i∈IY Vi both be direct sums of
some Vi’s. If X ∩ Y is nonzero, then X ∩ Y = ⊕i∈IX∩IY Vi.

Proof : For any nonzero v ∈ X∩Y , there is a unique expression v =
∑
i∈IX vi,X where vi,X ∈ Vi ⊆ X

and a unique expression v =
∑
i∈IY vi,Y where vi,Y ∈ Vi ⊆ Y . Since π is a DSD, there is also a

unique expression v =
∑
i∈I vi so, for each nonzero vi, vi = vi,X = vi,Y ∈ Vi ∩X ∩ Y . Thus for any

such i, Vi is a common direct summand to X and Y , so Vi ⊆ X ∩ Y . Thus every nonzero element
v ∈ X ∩ Y is in a direct sum of Vi’s for Vi ⊆ X ∩ Y and thus X ∩ Y is the direct sum of Vi that are
common direct summands of X and Y . �

Proposition 19 The meet π ∧ σ is the greatest lower bound of π and σ.

Proof : If τ � π, σ then each Xk = ⊕{Vi : Vi ⊆ Xk} = ⊕{Wj : Wj ⊆ Xk}. By the construction of
π∧σ, there is a set partition {Il}l∈L on I and a set partition {Jl}l∈L on J such that each subspace in
the meet π ∧ σ = {Yl} satisfies: Yl = ⊕i∈IlVi = ⊕j∈JlWj , and where no subsets of I smaller than Il
and subsets of J smaller than Jl have that property. Since each Vi is contained in some Xk, if i ∈ Il,
then Vi ⊆ Yl∩Xk. Since both Yl and Xk are direct sums of some Vi, then by the Lemma the nonzero
subspace Yl ∩Xk is also a direct sum of the common direct summand Vi’s. Symmetrically, since the
same Yl and Xk are direct sums of some Wj’s, then by the Lemma the nonzero subspace Yl ∩Xk is
also a direct sum of the common direct summand Wj’s. But since Yl is the smallest direct sum of
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both Vi’s and Wj’s, Yl ∩ Xk = Yl, i.e., Yl ⊆ Xk, and thus π ∧ σ is the greatest (in the refinement
partial ordering) lower bound on π and σ. �

Since the blob 0 is a lower bound for all DSDs, the meet of two DSDs always exists, which
means that DSD (V ) is a meet semi-lattice.

The binary DSDs α = {A1, A2} are the atoms of the meet-semi-lattice DSD (V ), i.e., the DSDs
so that there are no DSDs between them and the blob 0. A meet-semi-lattice is said to be atomistic
if every non-blob element is a join of atoms and DSD (V ) is atomistic since any non-blob DSD
π = {Vi}i∈I is clearly the join of the atoms {Vi,⊕i′∈I,i′ 6=iVi′} - π.

4.6 The partition lattice determined by a maximal DSD

There is no maximum DSD, only maximal DSDs. Each maximal DSD in the partial ordering is a
discrete or completely decomposed DSD of one-dimensional subspaces (or rays) of V (so the num-
ber of blocks is the dimension of V ). Each basis set U = {u1, ..., un} determines a maximal DSD
ω = {[ui]}ni=1 of the one-dimensional subspaces [ui] generated by the basis elements. A maximal ω
determines the segment [0, ω] = {π|π � ω} of DSD (V ) between 0 and ω. Fixing a basis set U so
that ω = {[ui]}ni=1 then associates a set partition block B with every Vi of the vector space partition
or DSD π - ω, namely the elements of the basis set U that generate Vi, so that the segment [0, ω]
with the induced operations of join and meet is isomorphic with the set partition lattice Π (U). Or we
could think of the one-dimensional subspaces as just points in a set ω so the segment is isomorphic
to the partition lattice Π (ω) on the points ω.

Π (ω) ∼= {π|π � ω} = [0, ω] ⊆ DSD (V )

Thus DSD (V ) can be viewed as a set of overlapping partition lattices (or partition algebras when
more operations are added) where a particular partition algebra is picked out by picking a maximal
DSD. This relationship in the quantum logic of DSDs is analogous to the way in which a complete set
of one-dimensional subspaces determines a Boolean algebra in the usual quantum logic of subspaces
when viewed as a set of overlapping Boolean algebras or a "partial Boolean algebra" [30, p. 193].
Figure 4.2 illustrates the general ‘shape’ of DSD (V ) with the partition lattices determined by
picking out a maximal DSD ω.

Figure 4.2: General shape of DSD (V ) with partition lattices determined by discrete DSDs.

For vector spaces over finite fields, e.g., Zn2 , the number of DSDs can be computed by the formulas
developed in the Appendix. Over a finite field with q element, each discrete DSD determines (q − 1)

n
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bases since there are q− 1 choices out of each one-dimensional subspace to be its basis element, but
for q = 2, (q − 1)

n
= 1 so the number of discrete DSDs and the number of basis sets are the same

in Zn2 . In Z2
2, there are only three two-element bases, i.e., three discrete DSDs, and no other DSDs

except the indiscrete one 0. Thus fixing a basis ω determines the partition lattice Π (ω) ∼= ℘ (1) which
we saw before was isomorphic to the two-element Boolean algebra ℘ (1). This is illustrated in Figure
8.3. The vectors in a vector space over Z2 can be represented as subsets of a computational basis
set U = {a, b} where the addition of vectors is the symmetric difference S + T = (S − T ) ∪ (T − S)
of subsets. Thus for example {a}+ {a, b} = {b} where over Z2, the addition of elements is mod (2)
so that {a}+ {a} = ∅. For the sake of brevity in the figures, the zero vector (empty set) is left out
of the subspaces in the illustrated DSDs and the elements in a subset are shorted to juxtaposition
so that {a, b} is written as {ab}. Thus the DSD {{∅, {a}} , {∅, {a, b}}} is shorted to {{a} , {ab}} in
Figure 4.3.

Figure 4.3: The Hasse diagram for DSD
(
Z2

2

)
.

As n increases, the number of DSDs in Zn2 increases rapidly, so for n = 3, there are 28 basis sets
and also 28 DSDs between the 28 discrete DSDs and the one indiscrete ones. Each discrete DSD has
three blocks and those three blocks can be combined (i.e., direct summed) in

(
3
2

)
= 3 ways to form

the three two-block DSDs between the three-block discrete DSD and the one-block blob 0. Figure
4.4 illustrates the fragment of DSD

(
Z3

2

)
for two discrete DSDs, each with their three intermediate

DSDs.

Figure 4.4: The part of DSD
(
Z3

2

)
for two discrete DSDs, i.e., two different basis sets.

The fragment of DSD
(
Z3

2

)
shown in Figure 4.4 is useful to illustrate the non-transitivity of

compatibility. The DSD {{b} , {a, c, ac}} and the DSD {{c} , {a, b, ab}} to its left in Figure 4.4 have
proto-join is {{a} , {b} , {c}} which spans the whole space so they are compatible. To the right of
{{b} , {a, c, ac}} in Figure 8.4 is the DSD {{a} , {b, ac, abd}} and their proto-join is {{a} , {b} , {ac}}
which also spans the space so they are also compatible. But for the tow DSDs on the left and right
of {{b} , {a, c, ac}} in Figure 8.4, their proto-join is {{a} , {b}} which does not span the space so they
are not compatible.

Picking a basis set such as ω = {{a} , {b} , {c}} for Z3
2 then determines a segment [0, ω] that is

isomorphic to the set partition lattice on a three element set where each ray in the discrete DSD
is treat as a point. Thus for this basis, the set partition lattice is illustrated in Figure 4.5 where a
block {a, b} in the set partition is abbreviated as ab.
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Figure 4.5: Partition lattice isomorphic to segment [0, ω] for ω = {{a} , {b} , {c}}.

If the basis set ω = {{ac} , {bc} , {abc}} had been chosen, then the segment [0, ω] would still be
isomorphic to the set partition lattice on a three-element set where the three elements are denoted
ac, bc, and abc, as illustrated in Figure 4.6.

Figure 4.6: The partition lattice determined by another three-element basis set for Z3
2.

To fix notation, let an arbitrary maximal DSD be ω = {Uz : z ∈ Z} where each Uz is a one-
dimensional subspace or ray and |Z| = dim (V ). For any π ∈ [0, ω], π � ω so ω is (by definition) the
maximum or top DSD in [0, ω] and thus might be symbolized as the discrete DSD 1ω = ω. Each
subspace Vi ∈ π � ω has Vi = ⊕{Uz : Uz ⊆ Vi, z ∈ Z} so 1ω absorbs what it joins and is the unit
element for meets within [0, ω]:

π ∨ 1ω = 1ω and π ∧ 1ω = π.

All the DSDs π and σ compatible with ω, i.e., π, σ ∈ [0, ω], are compatible with each other since
they have a common upper bound.

Fixing a maximal DSD ω reduces much of the reasoning in [0, ω] to reasoning about sets.
For instance, the number of DSDs in the segment [0, ω] is the number of partitions on a set with
cardinality dim (V ), i.e., |[0, ω]| is the Bell number [45] for n, the dimension of V .

Indeed, given any DSD π = {Vi}i∈I , each subspace Wj of σ ∈ [0, π] determines a subset Cj =
{Vi : Vi ⊆Wj} so σ defines a set partition σ (π) = {Cj}j∈J on π as a set soWj = ⊕Cj for j ∈ J . Thus
the lower segment [0, π] is isomorphic to the set-based partition lattice (join and meet operations)
on that set π, and, in particular, [0, ω] is isomorphic to the lattice of set partitions on the set ω.
As a partition lattice, [0, π], has the usual properties of partition lattices. Many theorems about set
partitions can then be transferred over in an appropriate form to [0, ω].

A distinction or dit of a DSD π = {Vi}i∈I ∈ [0, ω] for ω = {Uz}z∈Z is a pair (Uz, Uz′) in
distinct subspaces, i.e., Uz ⊆ Vi and Uz′ ⊆ Vi′ for some distinct Vi, Vi′ ∈ π. In terms of eigenvectors
and eigenvalues of a diagonalizable linear operator F : V → V , a distinction or dits is a pair of
eigenvectors of F with different eigenvalues. The common-dits property of non-blob set partitions
[?, p. 106] carries over to DSDs in [0, ω].
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Proposition 20 (Common dits) Any two non-blob DSDs π, σ ∈ [0, ω] have a dit in common.

Proof : Since π is not the blob, there are Uz, Uz′ with Uz ⊆ Vi and Uz′ ⊆ Vi′ for Vi 6= Vi′ . If
Uz ⊆ Wj ∈ σ and Uz′ ⊆ Wj′ ∈ σ for Wj 6= Wj′ we are finished so assume Uz ⊕ Uz′ ⊆ Wj for some
j ∈ J . Since σ is also not the blob, there is a Uz′′ contained in some Wj′′ where Wj′′ 6= Wj . Then
Uz′′ cannot be in the same subspace of π as Uz and Uz′ since those two are in different subspaces of
π, so either (Uz, Uz′′) or (Uz′ , Uz′′) is a dit common to π and σ. �

For instance, in the segment [0, ω] for ω = {{a} , {b} , {ac}} of Figure 8.4, there are three
intermediate DSDs and

(
3
2

)
= 3 pairs of intermediate DSDs: ({a} , {b}) is a common dit of the DSDs

{{b} , {a, c, ac}} and {{a} , {b, ac, abc}}, and ({a} , {ac}) is a common dit of {{a} , {b, ac, abc}} and
{{ac} , {a, b, ab}}, while ({b} , {ac}) is a common dit of {{b} , {a, c, ac}} and {{ac} , {a, b, ab}}.

As is appropriate to anything called a "logic," there should be an implication operation. Given
the close connections between set partitions and vector-space partitions or DSDs given a maximal
element ω, the DSD implication can be easily defined within [0, ω].

Definition 27 For σ, π ∈ [0, ω], implication is:

σ ⇒ω π = {Uz|Uz ⊆ Vi if ∃Vi ∈ π and Wj ∈ σ, Vi ⊆Wj}
∪ {Vi|Vi ∈ π and there is no Wj ∈ σ, Vi ⊆Wj}.

Since Vi = ⊕{Uz : Uz ⊆ Vi}, the implication is a DSD. For instance, for Z4
2 with ω = {{a} , {b} , {c} , {d}} =

1ω, σ = {{a} , {b, c, d, bc, bc, cd, bcd}} and π = {{a} , {b} , {c, d, cd}}, then σ ⇒ω π = {{a} , {b} , {c} , {d}} =
1ω since there is the inclusion of subspaces {c, d, cd} ⊆ {b, c, d, bc, bc, cd, bcd}. But the definition of
the implication illustrates contextuality in the sense that it may differ depending on which segment is
being considered. In the above example, ω′ = {{a} , {b} , {c} , {cd}} = 1ω′ is also a maximal element
in DSD

(
Z4

2

)
and both π, σ ∈ [0, ω′], and there is the same inclusion of subspaces so the subspace

{c, d, cd} is atomized to its one-dimensional components which are now {c} and {cd} so that:

σ ⇒ω′ π = {{a} , {b} , {c} , {cd}} = 1ω′ 6= 1ω = {{a} , {b} , {c} , {d}} = σ ⇒ω π.

In this case, both the contextualized implications were equal to 1ω and 1ω′ which means in either
case that σ - π (refinement is not a contextual notion).

Recall that for set partitions π =
{
f−1 (r)

}
r∈f(u)

and σ =
{
g−1 (r))

}
r∈g(U)

, given by numerical
attributes or random variables f, g : U → R, then σ ⇒ π = 1U iff σ - π which meant that f was
a suffi cient statistic for g. If the value of f was known for a experiment, then the value of g was
determined. In the quantum context, F and G would be compatible observables determining DSDs
π = {Vi}i∈I of the eigenspaces of F and σ = {Wj}j∈J of the eigenspaces of G, and ω as a maximal
DSD of simultaneous eigenvectors for F and G. Then σ ⇒ω π = 1ω, i.e., σ - π, would mean that F
was a suffi cient observable for G. In any measurement using the measurement basis ω, the eigenvalue
returned by an F -measurement determines the eigenvalue of the observable G. In general, σ ⇒ω π
is the DSD in [0, ω] that gives the extent to which the eigenvalue returned by an F -measurement
determines the eigenvalue of G.

The one-dimensional subspaces Uz in the DSD σ ⇒ π give the f eigenvalues, i.e., Uz ⊆ Vi,
that determine the g eigenvalues. For instance if g had degenerate eigenvalues and Fπ1 ,...,Fπm were
observables with DSDs π1, ..., πm also in [0, ω] (and thus compatible), then σ ⇒ ∨mi=1πi = 1ω implies
that the eigenvalues of Fπ1 ,...,Fπm are suffi cient to uniquely determine the eigenvalues of g. When
∨mi=1πi = 1ω as well, then the eigenvalues of Fπ1 ,...,Fπm are suffi cient to uniquely label the rays
Uz ∈ ω.

4.7 Exploiting duality in between the logics of subspaces and DSDs

The set partition operations (e.g., join, meet, and implication) on the partitions on a given universe
set U can be represented as subset operations on certain subsets, i.e., ditsets, of U × U . For a set

71



partition π = {B1, ..., Bm} on U , a distinction or dit of π is an ordered pair (u, u′) ∈ U × U of
elements in distinct blocks of π. The ditset dit (π) of π is a binary relation on U (i.e., a subset of
U ×U), and it is the complement in U ×U of the equivalence relation associated with π. A partition
relation on U × U is defined as the complement of an equivalence relation. The partition relations
on U ×U are in one-to-one correspondence with the partitions on U . Given a partition π on U , the
ditset dit (π) is the corresponding partition relation, and given a partition relation, the equivalence
classes in the complementary equivalence relation give the corresponding partition.

We have seen that the operations on the set partitions (join, meet, and implication) have cor-
responding operations on ditsets. Since σ � π iff dit (σ) ⊆ dit (π), the partial order of refinement
between partitions is just inclusion between ditsets. In this manner the partition algebra Π (U) of
partitions on U is represented as the algebra of the ditsets of U × U .

With ω = {Uz}z∈Z fixed and playing the role of U , the above construction can be trans-
ferred to vector spaces. The operations on DSDs in Π (ω) (the segment [0, ω] endowed with the
lattice and implication operations) can be represented as subspace operations on certain subspaces
of the tensor product V ⊗ V that are direct sums of the subspaces in the maximal DSD ω ⊗ ω =
{Uz ⊗ Uz′ | (Uz, Uz′) ∈ ω × ω} of one-dimensional subspaces on V ⊗ V . The easiest translation uses
the fact that a DSDs π = {Vi}i∈I ∈ Π (ω) defines a set partition π (ω) = {Bi}i∈I on ω = {Uz}z∈Z
as a set where: Bi = {Uz|Uz ⊆ Vi} and Vi = ⊕Bi = ⊕{Uz|Uz ⊆ Vi} for i ∈ I. Then the ditspace
Dit (π) defined by the DSD π is the following subspace of V ⊗ V :

Dit (π) = ⊕{Uz ⊗ Uz′ | (Uz, Uz′) ∈ dit (π (ω))} .

Note that by the Common-Dits Theorem, any two nonzero ditspaces, i.e., ditspaces for non-blob
DSDs π, σ ∈ Π (ω), have a nonzero intersection. The operations on the ditspaces are those induced
by the operations on the ditsets. For π, σ ∈

∏
(ω),

Dit (π ∨ σ) = ⊕{Uz ⊗ Uz′ | (Uz, Uz′) ∈ dit (π (ω) ∨ σ (ω))}
Dit (π ∧ σ) = ⊕{Uz ⊗ Uz′ | (Uz, Uz′) ∈ dit (π (ω) ∧ σ (ω))}

Dit (σ ⇒ π) = ⊕{Uz ⊗ Uz′ | (Uz, Uz′) ∈ dit (σ (ω)⇒ π (ω))} .

The smallest ditspace is Dit (0) = {0} and the largest ditspace is Dit (1ω) = ⊕{Uz ⊗ Uz′ |Uz 6= Uz′},
and the partial ordering is inclusion. Then the partition algebra of DSDs in Π (ω) is represented by
the algebra of the ditspaces of V ⊗ V for DSDs in Π (ω).

Given the basic (category-theoretic) duality between subsets and partitions, this construction
(using ditsets) to represent partition operations as subset operations—with the corresponding vector
space version of the construction using ditspaces—has a dual construction to represent subset opera-
tions by partition operations. In the set case, instead of working with certain subsets (ditsets) of the
product U × U , the dual set construction works with certain partitions on the coproduct (disjoint
union) U ] U . And for the vector space version, instead of working with subspaces (ditspaces) of
the tensor product V ⊗V , the dual vector space construction works with DSDs on the coproduct or
direct sum V ⊕ V ∗ (where V ∗ is a copy of V ).

The set partition implication endows a rich structure on the partition algebra Π (U) of set
partitions on U (always |U | ≥ 2). For π ∈ Π (U), the π-regular partitions are the partitions of the
form σ ⇒ π, which may be symbolized as

π¬σ, for any σ ∈ Π (U). They are all in the segment [π,1U ]
and they form a Boolean algebra, the Boolean core Bπ of [π,1U ], under the partition operations of
join, meet, and π-negation, where the π-negation of σ ⇒ π =

π¬σ is (σ ⇒ π)⇒ π =
π¬π¬σ. The dual

construction uses this Boolean algebra based on partition operations.
We start with the set version of the dual construction and then go over the vector space version

in more detail. Given a subset S ⊆ U , the subset corelation ∆ (S) is the partition on the disjoint
union U ]U∗ (U∗ being a copy of U) whose blocks are the pairs {u, u∗} for u ∈ S and singletons {u}
and {u∗} if u /∈ S. Thus ∆ (S) just encodes in a partition on the disjoint union which u ∈ U are in the
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subset S ⊆ U . The subset corelations are partitions on the coproduct U ]U defined by subsets of U ,
and they are dual to the relations that are subsets of the product U×U . At the two extremes, ∆ (U)
is the bottom partition 0U]U∗ on U]U∗ consisting of all pairs {u, u∗} for u ∈ U , and ∆ (∅) = 1U]U∗ .
The key lemma (see below) is that (∆ (S)⇒ ∆ (U)) = ∆ (Sc) (analogous to σ ⇒ 0U = ¬σ) so the
∆ (U)-negated partitions on U ] U∗ are the same as the complementary subset corelations ∆ (Sc).
Then it can be seen (proof below) that the Boolean core B∆(U) of [∆ (U) ,1U]U∗ ] is a Boolean
algebra using the partition operations of join, meet, and ∆ (U)-negation that is isomorphic to the
powerset BA ℘ (U) under the correspondence ∆ (S)⇒ ∆ (U) 7→ S for S ∈ ℘ (U):

B∆(U)
∼= ℘ (U) .

In that manner, the Boolean subset operations on subsets of U are represented by partition operations
on certain partitions on U ] U∗[15, p. 320].

For the vector space version of the dual construction, note that given a maximal DSD ω =
{Uz}z∈Z , there is the associated powerset BA ℘ (ω) or ℘ (Z) depending on whether we take ω or Z
as playing the role of U . Choosing the Z option, for each S ∈ ℘ (Z), there is an associated subspace
A (S) = ⊕{Uz|z ∈ S} and an associated projection operator PS : V → V to that subspace. Each
atomic DSD {A,A′} in Π (ω) has the form {A (S) , A (Sc)} (where Sc = Z − S is the complement
in Z) with V = A (Z) and {0} = A (∅). Thus there is an induced BA structure on the subspaces
{A (S) |S ∈ ℘ (Z)} and on the projection operators {PS |S ∈ ℘ (Z)} isomorphic to ℘ (Z). But how
can this BA of certain subspaces of V be represented using the DSD operations of the logic of vector
space partitions?

Let V ⊕ V ∗ be the direct sum (coproduct) of V with a copy V ∗ of itself. Given a maximal
element ω = {Uz}z∈Z of V , then the union with the copy ω∗ = {U∗z }z∈Z forms a maximal element
ω ∪ ω∗ in the refinement ordering of DSDs in DSD (V ⊕ V ∗) so we can work in the partition logic
Π (ω ∪ ω∗).

Definition 28 For S ∈ ℘ (Z) with the corresponding subspace A (S), let ∆ (A (S)) or just ∆ (S) be
the DSD in Π (ω ∪ ω∗), called a subspace corelation, consisting of all the one-dimensional subspaces
Uz and U∗z for z /∈ S, i.e., Uz * A (S), and Uz ⊕ U∗z for z ∈ S, i.e., Uz ⊆ A (S).

This is clearly just the subspace version of the subset corelation. Then∆ (Z) is the bottom 0ω∪ω∗DSD
consisting of all the subspaces Uz ⊕ U∗z for z ∈ Z and ∆ (∅) = 1ω∪ω∗ .

Lemma 29 ∆ (S)⇒ ∆ (Z) = ∆ (Sc).

Proof : For any z ∈ S, we have Uz ⊕ U∗z in both ∆ (S) and ∆ (Z), so Uz ⊕ U∗z is discretized in
∆ (S) ⇒ ∆ (Z) into Uz and U∗z separately. For any z ∈ Sc, Uz ⊕ U∗z is only in ∆ (Z) so it remains
whole in ∆ (S)⇒ ∆ (Z) so that implication DSD is ∆ (Sc). �

Thus the ∆ (Z)-negated DSDs ∆ (S) ⇒ ∆ (Z) are the subspace corelations in Π (ω ∪ ω∗). The
Boolean core B∆(Z) of the segment [∆ (Z) , ω ∪ ω∗] is a BA with the DSD operations of join, meet,
implication, and ∆ (Z)-negation in Π (ω ∪ ω∗).

Proposition 21 B∆(Z)
∼= ℘ (Z).

Proof : The isomorphism associates ∆ (S) ⇒ ∆ (Z) ∈ B∆(Z) with S ∈ ℘ (Z). For S, T ∈ ℘ (Z), the
union S ∪ T is associated with the join (∆ (S)⇒ ∆ (Z)) ∨ (∆ (T )⇒ ∆ (Z)) = ∆ (Sc) ∨ ∆ (T c) =
∆ (Sc ∩ T c) = ∆ ((S ∪ T )

c
) = ∆ (S ∪ T ) ⇒ ∆ (Z). The other Boolean operations of meet and

∆ (Z)-negation go in a similar manner. The null set ∅ ∈ ℘ (Z) is associated with ∆ (∅) ⇒ ∆ (Z) =
∆ (∅c) = ∆ (Z) which is the bottom of the BA B∆(Z), and Z ∈ ℘ (Z) is associated with ∆ (Z) ⇒
∆ (Z) = ∆ (Zc) = ∆ (∅) = 1ω∪ω∗ which is the top of B∆(Z). If S ⊆ T in ℘ (Z), then T c ⊆ Sc so
∆ (S)⇒ ∆ (Z) = ∆ (Sc) � ∆ (T c) = ∆ (T )⇒ ∆ (Z) in the refinement ordering of Π (ω ∪ ω∗). �

The treatment of DSD operations on V as subspace operations on V ⊗V , and the dual treatment
of subspace operations on V as DSD operations on V ⊕V ∗ exhibit the dual relationship between the
two logics of DSDs and subspaces.
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4.8 DSDs, CSCOs, and CSCDs

For a self-adjoint operator F on a Hilbert space V (or diagonalizable operator on any V ), the
projections Pλi can be constructed from the DSD π = {Vλi}i∈I of eigenspaces for the eigenvalues
{λi}i∈I , and then the operator can be reconstructed—given the eigenvalues—from the decomposition
F =

∑
i∈I λiPλi . A set partition π = {B,B′, ...} on U can always be construed as the inverse-image

partition of a numerical attribute f : U → R by assigning different values to the different blocks in
π. Thus the logic of set partitions is the logic of numerical attributes or random variables which is
abstracted from the specific values and only reflects when the values were the same or different. In
the same sense, the logic of DSDs of a vector space is the logic of diagonalizable operators on the
space which is abstracted from the specific eigenvalues and only reflects when the eigenvalues were
the same or different.

Given a state ψ and a self-adjoint operator F : V → V on a finite dimensional Hilbert space V ,
the operator determines the DSD π = {Vλi}i∈I of eigenspaces for the eigenvalues λi. The projective
measurement operation uses the eigenspace DSD to decompose ψ into the unique parts given by
the projections Pλi (ψ) into the eigenspaces Vλi , where Pλi (ψ) is the outcome of the projective
measurement with probability Pr (λi|ψ) = ‖Pλi (ψ)‖2 / ‖ψ‖2.

The eigenspace DSD π = {Vλi}i∈I of F is refined by one or more maximal DSDs, i.e., π =
{Vλi}i∈I � ω = {Uz}z∈Z . For each such ω, there is a set partition π (ω) = {Bλi}i∈I on ω such that
Vλi = ⊕Bλi . If some of the Vλi have dimension larger than one (“degeneracy”), then more measure-
ments by commuting operators will be necessary to further decompose down to single dimensional
eigenspace. If two self-adjoint operators commute, then their eigenspace DSDs are compatible. Given
another self-adjoint operator G : V → V commuting with F , its eigenspace DSD σ =

{
Wµj

}
j∈J (for

eigenvalues µj of G) is compatible with π = {Vλi}i∈I and thus has a join DSD π ∨ σ in DSD (V )
which is also in Π (ω) for one or more maximal ω each representing an orthonormal basis of simulta-
neous eigenvectors. The combined measurement by the two commuting operators is just the single
measurement using the join DSD π ∨ σ.

Dirac’s notion of a Complete Set of Commuting Operators (CSCO) {Fπl}
m
l=1 [?] translates into

the language of the quantum logic of DSDs as a Complete Set of Compatible DSDs (CSCD) {πl}ml=1

whose join ∨ml=1πl is a maximal DSD ω = 1ω in DSD (V ) and thus is the maximum DSD 1ω in
Π (ω). As noted above, the eigenvalues of the observables Fπl can then be used to uniquely label the
Uz ∈ 1ω = ω.

In partition logic on sets, a valid formula, i.e., a partition tautology, is a logical formula (using
the partition operations of join, meet, and implication) so that when any partitions on the universe
set U are substituted for the variables, the result is the discrete partition 1U on that set. Restated
for DSDs, a DSD tautology in the partition logic Π (ω) for any maximal ω in DSD (V ) for any V is
any formula (in the language of join, meet, and implication) so that no matter which DSDs of Π (ω)
are substituted for the variables, the result is 1ω. For instance, modus ponens σ ∧ (σ ⇒ω π) ⇒ω π
is a DSD tautology in the partition logic Π (ω), so for any DSDs π, σ ∈ Π (ω), π is suffi cient for
σ ∧ (σ ⇒ω π). In the Boolean core Bπ of [π, ω], the ordinary Boolean tautologies, like the law of
excluded middle,

(σ ⇒ω π) ∨ ((σ ⇒ω π)⇒ω π) =
π¬ωσ ∨

π¬ω
π¬ωσ,

hold for any π, σ ∈ Π (ω), so they are DSD tautologies in the whole partition logic Π (ω), where
that formula is the weak law of excluded middle for π-negation. Thus for any DSDs π, σ ∈ Π (ω),
the DSDs σ ⇒ω π and (σ ⇒ω π) ⇒ω π form a CSCD since their join is the discrete DSD 1ω. The
law of excluded middle in Bπ generalizes to the DSD tautology that is the disjunctive normal form
decomposition of 1ω for any number of variables. For instance, for any π, σ, and τ in Π (ω), we have
the DSD tautology:(

π¬ω
π¬ωσ ∧

π¬ω
π¬ωτ
)
∨
(
π¬ω

π¬ωσ ∧
π¬ωτ
)
∨
(
π¬ωσ ∧

π¬ω
π¬ωτ
)
∨
(
π¬ωσ ∧

π¬ωτ
)
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so those four disjuncts form a CSCD. Assigning distinct real numbers to the subspaces of the disjunct
DSDs defines commuting self-adjoint operators that form one of Dirac’s CSCOs.

4.9 Some concluding thoughts

It is early days in the development of the logic of set partitions and the logic of vector space partitions
or direct-sum decompositions. In spite of the category-theoretic duality with subsets, partitions
are considerably more complicated and that is reflected in the primal and dual structures in the
partition algebras Π (U). Compared to Boolean algebras, partition algebras are rather understudied.
In fact, there was over a century gap between the definition of the lattice operations of join and
meet on partitions in the nineteenth century and the definition of the implication and other logical
operations in the twenty-first century so that one could speak of "partition algebras" instead of just
partition lattices. Moreover, the study of "partition lattices" ([4]; [28]) using the upside-down lattice
of equivalence relations did not promote the comparisons with the Boolean algebras or the Heyting
and co-Heyting algebras.

The logic of subspaces specialized to Hilbert spaces, i.e., the usual quantum logic initiated by
Birkhoff and Von Neumann [5], has been extensively, if not exhaustively, developed. The logic of the
dual concept of direct-sum decompositions was developed here using the sets-to-vector-spaces "Yoga
of linearization".11 The development was in general terms without focusing exclusively on Hilbert
spaces. Much of the quantum flavor can be brought out in the general case and even in the special
case of vector spaces over Z2 [17].

The Boolean logic of subsets is usually treated as the logic of propositions by associating with
each subset the proposition that a generic element of the universe set is a member of the subset.
Subset formulas that always evaluate to the universe set (i.e., subset tautologies) are then associated
with the propositional formulas that always evaluate to True, i.e., truth-table tautologies. Boole [7]
also developed the quantitative theory that measures subsets, i.e., probability theory. The quantum
logic of subspaces is often characterized as the logic of the QM propositions that a state vector is in
a subspace.

The logic of set partitions is the logic of numerical attributes or random variables that abstracts
away from the numerical values and focuses on the inverse-image partition that retains the informa-
tion as to whether the values were the same or different (i.e., the distinction between different blocks
of the partition). If a proposition is to be associated with a partition, then it is the proposition
that the partition distinguishes a pair of different elements from the universe set, i.e., that the pair
of elements is a distinction of the partition (two elements in different blocks of the partition). If a
partition formula always evaluates to the discrete partition then it is associated with the proposition
that the formula always distinguishes any pair of different elements, i.e., the formula is a partition
tautology. The quantitative theory that measures the extent to which a partition distinguishes is
the information theory of logical entropy where the logical entropy of a partition is the probability
that two independent draws from the universe set give a distinction of the partition—just as the
probability of a subset is the probability that a single draw from the universe set gives an element
of the subset.12 Linearization yields the logic of direct-sum decompositions as the logic of diago-
nalizable linear operators (or self-adjoint operators or observables in the QM case) that abstracts
away from the numerical values of the eigenvalues and that focuses on the DSD of the eigenspaces
that still reflects whether the eigenvalues were the same or different (i.e., the distinction between the
different eigenspaces). If a proposition is to be associated with an observable in QM, then it is the
proposition that the observable distinguishes between its eigenvectors (by being in different blocks
of the DSD of eigenspaces). The quantum logical entropy of an observable applied to a pure state is

11See also the use of q-analogues in the Appendix where enumeration formulas for vector spaces with q elements
reduce to set formulas by taking q − 1.
12Note the dual role of elements of a subsets and distinctions of a partition [22].
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the probability that two independent projective measurements of the pure state by that observable
will yield a distinction of the observable’s DSD of eigenspaces, i.e., distinct eigenvalues.

Set concept Linearization Quantum version over Hilbert space

Boolean logic of subsets Logic of subspaces Orthomodular lattice of closed subspaces
Logic of partitions Logic of DSDs Quantum logic of DSDs

Table 4.2: Parallel development of subset and partition logics

The topic initially developed in this book is summarized in the bottom row of Table 4.2. The
quantitative or information-theoretic versions of the logics of set and vector-space partitions have
been developed elsewhere ([18], [20], [23]).

5 Appendix: Counting direct-sum decompositions of finite
vector spaces

5.1 Reviewing q-analogs: Again from sets to vector spaces

The theory of q-analogs shows how many “classical” combinatorial formulas for finite sets can be
extended to finite vector spaces where q is the cardinality of the finite base field GF (q), i.e., q = pn,
a power of a prime.

The natural number n is replaced by:

[n]q = qn−1
q−1 = 1 + q + q2 + ...+ qn−1

so as q → 1, then [n]q → n in the passage from vector spaces to sets. The factorial n! is replaced, in
the q-analog

[n]q! = [n]q [n− 1]q ... [1]q

where [1]q = [0]q = 1.
To obtain the Gaussian binomial coeffi cients we calculate with ordered bases of a k-dimensional

subspace of an n-dimensional vector space over the finite field GF (q) with q elements. There are qn

elements in the space so the first choice for a basis vector has (qn − 1) (excluding 0) possibilities,
and since that vector generated a subspace of dimension q, the choice of the second basis vector is
limited to (qn − q) elements, and so forth. Thus:

(qn − 1) (qn − q)
(
qn − q2

)
...
(
qn − qk−1

)
= (qn − 1) q1

(
qn−1 − 1

)
q2
(
qn−2 − 1

)
...qk−1

(
qn−k+1 − 1

)
=

[n]q !(q−1)k

[n−k]q !
q(1+2+...+(k−1)) =

[n]q !(q−1)k

[n−k]q !
qk(k−1)/2 =

[n]q !(q−1)k

[n−k]q !
q(
k
2).

Number of ordered bases for a k-dimensional subspace in an n-dimensional space.

But for a space of dimension k, the number of ordered bases are:(
qk − 1

) (
qk − q

) (
qk − q2

)
...
(
qk − qk−1

)
=
(
qk − 1

)
q1
(
qk−1 − 1

)
q2
(
qk−2 − 1

)
...qk−1

(
qk−k+1 − 1

)
= [k]q! (q − 1)

k
qk(k−1)/2 = [k]q! (q − 1)

k
q(
k
2)

Number of ordered bases for a k-dimensional space.

Thus the number of subspaces of dimension k is the ratio:
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(
n
k

)
q

=
[n]q !(q−1)kqk(k−1)/2

[n−k]q ![k]q !(q−1)kqk(k−1)/2
=

[n]q !

[n−k]q ![k]q !

Gaussian binomial coeffi cient

where
(
n
k

)
q
→
(
n
k

)
as q → 1, i.e., the number of k-dimensional subspaces → number of k-element

subsets. Many classical identities for binomial coeffi cients generalize to Gaussian binomial coeffi cients
[27].

5.2 The direct formulas for counting partitions of finite sets

Using sophisticated techniques, the direct-sum decompositions of a finite vector space over GF (q)
have been enumerated in the sense of giving the exponential generating function for the numbers
([3]; [48]). Our goal is to derive by elementary methods the formulas to enumerate these and some
new but related direct-sum decompositions.

Two subspaces of a vector space are said to be disjoint if their intersection is the zero subspace
0. A direct-sum decomposition (DSD) of a finite-dimensional vector space V over a base field F is
a set of (nonzero) pair-wise disjoint subspaces, called blocks (as with partitions), {Vi}i=1,...,m that
span the space. Then each vector v ∈ V has a unique expression v =

∑m
i=1 vi with each vi ∈ Vi.

Since a direct-sum decomposition can be seen as the vector-space version of a set partition, we begin
with counting the number of partitions on a set.

Each set partition {B1, ..., Bm} of an n-element set has a "type" or "signature" number partition
giving the cardinality of the blocks where they might be presented in nondecreasing order which we
can assume to be: (|B1| , |B2| , ..., |Bm|) which is a number partition of n. For our purposes, there is
another way to present number partitions, the part-count representation, where ak is the number of
times the integer k occurs in the number partition (and ak = 0 if k does not appear) so that:

a11 + a22 + ...+ ann =
∑n
k=1 akk = n.

Part-count representation of number partitions keeping track of repetitions.

Each set partition {B1, ..., Bm} of an n-element set has a part-count signature a1, ..., an, and
then there is a "classical" formula for the number of partitions with that signature ([1, p. 215]; [32,
p. 427]).

Proposition 22 The number of set partitions for the given signature: a1, ..., an where
∑n
k=1 akk = n

is:

n!
a1!a2!...an!(1!)a1 (2!)a2 ...(n!)an .

.

Proof: Suppose we count the number of set partitions {B1, ..., Bm} of an n-element set when the
blocks have the given cardinalities: nj = |Bj | for j = 1, ...,m so

∑m
j=1 nj = n. The first block B1

can be chosen in
(
n
n1

)
ways, the second block in

(
n−n1
n2

)
ways and so forth, so the total number of

ways is: (
n
n1

)(
n−n1
n2

)
...
(
n−n1−...−nm−1

nm

)
= n!

n1!(n−n1)!
(n−n1)!

n2!(n−n1−n2)! ...
(n−n1−...−nm−1)!
nm!(n−n1−...−nm)!

= n!
n1!...nm! =

(
n

n1,...,nm

)
the multinomial coeffi cient. This formula can then be restated in terms of the part-count signature
a1, ..., an where

∑n
k=1 akk = n as: n!

(1!)a1 (2!)a2 ...(n!)an . But that overcounts since the ak blocks of size
k can be permuted without changing the partition’s signature so one needs to divide by ak! for
k = 1, ..., n which yields the formula for the number of partitions with that signature. �

The Stirling numbers S (n,m) of the second kind are the number of partitions of an n-element
set with m blocks. Since

∑n
k=1 ak = m is the number of blocks, the direct formula (as opposed to a

recurrence formula) is:
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S (n,m) =
∑

1a1+2a2+...+nan=n
a1+a2+...+an=m

n!
a1!a2!...an!(1!)a1 (2!)a2 ...(n!)an

Direct formula for Stirling numbers of the second kind.

The Bell numbers B (n) are the total number of partitions on an n-element set so the direct
formula is:

B (n) =
∑n
m=1 S (n,m) =

∑
1a1+2a2+...+nan=n

n!
a1!a2!...an!(1!)a1 (2!)a2 ...(n!)an

Direct formula for total number of partitions of an n-element set.

5.3 The direct formulas for counting DSDs of finite vector spaces

Each DSD π = {Vi}i=1,...,m of a finite vector space of dimension n also determines a number partition
of n using the dimensions ni = dim (Vi) in place of the set cardinalities, and thus each DSD also
has a signature a1, ..., an where the subspaces are ordered by nondecreasing dimension and where∑n
k=1 akk = n and

∑n
k=1 ak = m.

Proposition 23 The number of DSDs of a vector space V of dimension n over GF (q) with the
part-count signature a1, ..., an is:

1
a1!a2!...an!

[n]q !

([1]q !)
a1 ...([n]q !)

an q
1
2 (n2−

∑
k akk

2)

Number of DSDs for the given signature a1, ..., an where
∑n
k=1 akk = n.

Proof: Reasoning first in terms of the dimensions ni, we calculate the number of ordered bases in a
subspace of dimension n1 of a vector space of dimension n over the finite field GF (q) with q elements.
There are qn elements in the space so the first choice for a basis vector is (qn − 1) (excluding 0),
and since that vector generated a subspace of dimension q, the choice of the second basis vector is
limited to (qn − q) elements, and so forth. Thus:

(qn − 1) (qn − q)
(
qn − q2

)
...
(
qn − qn1−1

)
= (qn − 1) q1

(
qn−1 − 1

)
q2
(
qn−1 − 1

)
...qn1−1

(
qn−n1+1 − 1

)
= (qn − 1)

(
qn−1 − 1

)
...
(
qn−n1−1 − 1

)
q(1+2+...+(n1−1))

Number of ordered bases for an n1-dimensional subspace of an n-dimensional space.

If we then divide by the number of ordered bases for an n1-dimension space:

(qn1 − 1) (qn1 − q) ...
(
qn1 − qn1−1

)
= (qn1 − 1)

(
qn1−1 − 1

)
... (q − 1) q(1+2+...+(n1−1))

we could cancel the qn1(n1−1) terms to obtain the Gaussian binomial coeffi cient

(qn−1)(qn−1−1)...(qn−n1−1−1)q(1+2+...+(n1−1))

(qn1−1)(qn1−1−1)...(q−1)q(1+2+...+(n1−1))
=
(
n
n1

)
q

=
[n]q !

[n−n1]q ![n1]q !

Number of different n1-dimensional subspaces of an n-dimensional space.

If instead we continue to develop the numerator by multiplying by the number of ordered bases
for an n2-dimensional space that could be chosen from the remaining space of dimension n− n1 to
obtain:

(qn − 1) (qn − q)
(
qn − q2

)
...
(
qn − qn1−1

)
× (qn − qn1)

(
qn − qn1+1

)
...
(
qn − qn1+n2−1

)
= (qn − 1)

(
qn−1 − 1

)
...
(
qn−n1−n2+1 − 1

)
q(1+2+...+(n1+n2−1)).

Then dividing by the number of ordered bases of an n1-dimensional space times the number of
ordered bases of an n2-dimensional space gives the number of different "disjoint" (i.e., only overlap
is zero subspace) subspaces of n1-dimensional and n2-dimensional subspaces.
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=
(qn−1)(qn−1−1)...(qn−n1−n2+1−1)q(1+2+...+(n1+n2−1))

(qn1−1)(qn1−1−1)...(q−1)q(1+2+...+(n1−1))×(qn2−1)(qn2−1−1)...(q−1)q1+2+...+(n2−1)
.

Continuing in this fashion we arrive at the number of disjoint subspaces of dimensions n1, n2, ..., nm
where

∑m
i=1 ni = n:

(qn−1)(qn−1−1)...(q−1)q(1+2+...+(n−1))∏
i=1,...,m

(qni−1)(qni−1−1)...(q−1)q(1+2+...+(ni−1))
=

[n]q !q
n(n−1)/2

[n1]q !q
n1(n1−1)/2×...×[nm]q !q

nm(nm−1)/2

=
[n]q !

[n1]q !...[nm]q !
q
1
2 [n(n−1)−

∑m
i=1 ni(ni−1)].

There may be a number ak of subspaces with the same dimension, e.g., if nj = nj+1 = k, then
ak = 2 so the term [nj ]q!q

nj(nj−1)/2×[nj+1]q!q
nj+1(nj+1−1)/2 in the denominator could be replaced by(

[k]q!
)ak

qakk(k−1)/2. Hence the previous result could be rewritten in the part-count representation:

[n]q !

([1]q !)
a1 ...([n]q !)

an q
1
2 [n(n−1)−

∑
k akk(k−1)].

And permuting subspaces of the same dimension k yields a DSD with the same signature, so we
need to divide by ak! to obtain the formula:

[n]q !

a1!...an!([1]q !)
a1 ...([n]q !)

an q
1
2 [n(n−1)−

∑
k akk(k−1)].

The exponent on the q term can be simplified since
∑
k akk = n:

1
2 [n (n− 1)− (

∑
k akk (k − 1))] = 1

2

[
n2 − n−

(∑
k akk

2 −
∑
k akk

)]
= 1

2

[
n2 − n−

(∑
k akk

2 − n
)]

= 1
2

(
n2 −

∑
k akk

2
)
.

This yields the final formula for the number of DSDs with the part-count signature a1, ..., an:

[n]q !

a1!...an!([1]q !)
a1 ...([n]q !)

an q
1
2 (n2−

∑
k akk

2). �

Note that the formula is not obtained by a simple substitution of [k]q! for k! in the set partition

formula due to the extra term q
1
2 (n2−

∑
k akk

2), but that it still reduces to the classical formula for
set partitions with that signature as q → 1. This formula leads directly to the vector space version
of the Stirling numbers of the second kind to count the DSDs with m parts and to the vector space
version of the Bell numbers to count the total number of DSDs.

Before giving those formulas, it should be noted that there is another q-analog formula called
"generalized Stirling numbers" (of the second kind)—but it generalizes only one of the recurrence
formulas for S (n,m). It does not generalize the interpretation "number of set partitions on an n-
element set with m parts" to count the vector space partitions (DSDs) of finite vector spaces of
dimension n with m parts. The Stirling numbers satisfy the recurrence formula:

S (n+ 1,m) = mS (n,m) + S (n− 1,m) with S (0,m) = δ0m.

Donald Knuth uses the braces notation for the Stirling numbers,
{
n
m

}
= S (n,m), and then he defines

the "generalized Stirling number" [32, p. 436]
{
n
m

}
q
by the q-analog recurrence relation:{

n+1
m

}
q

=
(
1 + q + ...+ qm−1

) {
n
m

}
q

+
{

n
m−1

}
q
;
{

0
m

}
q

= δ0m.

It is easy to generalize the direct formula for the Stirling numbers and it generalizes the set
partition interpretation to vector space partitions:
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Dq (n,m) =
∑

1a1+2a2+...+nan=n
a1+a2+...+an=m

[n]q !

a1!...an!([1]q !)
a1 ...([n]q !)

an q
1
2 (n2−

∑
k akk

2)

Number of DSDs of a finite vector space of dimension n over GF (q) with m parts.

The number Dq (n,m) is Snm in [48]. Taking q → 1 yields the Stirling numbers of the second kind,
i.e., D1 (n,m) = S (n,m). Knuth’s generalized Stirling numbers

{
n
m

}
q
and Dq (n,m) start off the

same, e.g.,
{

0
0

}
q

= 1 = Dq (0, 0) and
{

1
1

}
q

= 1 = Dq (1, 1), but then quickly diverge. For instance,

all
{
n
n

}
q

= 1 for all n, whereas the special case of Dq(n, n) is the number of DSDs of 1-dimensional
subspaces in a finite vector space of dimension n over GF (q) (see table below for q = 2). The formula
Dq (n, n) is M (n) in [49, Example 5.5.2(b), pp. 45-6] or [48, Example 2.2, p. 75.].

The number Dq(n, n) of DSDs of 1-dimensional subspaces is closely related to the number of
basis sets. The old formula for that number of bases is [37, p. 71]:

1
n! (qn − 1) (qn − q) ...

(
qn − qn−1

)
= 1

n! (qn − 1)
(
qn−1 − 1

)
...(q1 − 1)q(1+2+...+(n−1))

= 1
n! [n]q!q

(n2) (q − 1)
n

since [k]q = qk−1
q−1 = 1 + q + q2 + ...+ qk−1 for k = 1, ..., n.

In the formula for Dq (n, n), there is only one signature a1 = n and ak = 0 for k = 2, ..., n
which immediately gives the formula for the number of DSDs with n 1-dimensional blocks and each
1-dimensional block has q − 1 choices for a basis vector so the total number of sets of basis vectors
is given by the same formula:

Dq (n, n) (q − 1)
n

=
[n]q !

a1! q
1
2 (n2−a112) (q − 1)

n
= 1

n! [n]q!q
(n2) (q − 1)

n.

Note that for q = 2, (q − 1)
n

= 1 so D2 (n, n) is the number of different basis sets.
Summing the Dq (n,m) for all m gives the vector space version of the Bell numbers B (n):

Dq (n) =
∑n
m=1Dq (n,m) =

∑
1a1+2a2+...+nan=n

1
a1!a2!...an!

[n]q !

([1]q !)
a1 ...([n]q !)

an q
1
2 (n2−

∑
k akk

2)

Number of DSDs of a vector space of dimension n over GF (q).

Our notation Dq (n) is Dn (q) in Bender and Goldman [3] and |Qn| in Stanley ([48], [49]). Setting
q = 1 gives the Bell numbers, i.e., D1 (n) = B (n).

5.4 Counting DSDs with a block containing a designated vector v∗

Set partitions have a property not shared by vector space partitions, i.e., DSDs. Given a designated
element u∗ of the universe set U , the element is contained in some block of every partition on U .
But given a nonzero vector v∗ in a space V , it is not necessarily contained in a block of any given
DSD of V . Some proofs of formulas use this property of set partitions so the proofs do not generalize
to DSDs.

Consider one of the formulas for the Stirling numbers of the second kind:

S (n,m) =
∑n−1
k=0

(
n−1
k

)
S (k,m− 1)

Summation formula for S (n,m).

The proof using the designated-element u∗ reasoning starts with the fact that any partition of
U with |U | = n with m blocks will have one block containing u∗ so we then only need to count the
number of m− 1 blocks on the subset disjoint from the block containing u∗. If the block containing
u∗ had n − k elements, there are

(
n−1
k

)
blocks that could be complementary to an (n− k)-element
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block containing u∗ and each of those k-element blocks had S (k,m− 1) partitions on it with m− 1
blocks. Hence the total number of partitions on an n-element set with m blocks is that sum.

This reasoning can be extended to DSDs over finite vector spaces, but it only counts the number
of DSDs with a block containing a designated nonzero vector v∗ (it doesn’t matter which one), not
all DSDs. Furthermore, it is not a simple matter of substituting

(
n−1
k

)
q
for

(
n−1
k

)
. Each (n− k)-

element subset has a unique k-element subset disjoint from it (its complement), but the same does
not hold in general vector spaces. Thus given a subspace with (n− k)-dimensions, we must compute
the number of k-dimensional subspaces disjoint from it.

Let V be an n-dimensional vector space over GF (q) and let v∗ be a specific nonzero vector in V .
In a DSD with an (n− k)-dimensional block containing v∗, how many k-dimensional subspaces are
there disjoint from the (n− k)-dimensional subspace containing v∗? The number of ordered basis

sets for a k-dimensional subspace disjoint from the given (n− k)-dimensional space is:(
qn − qn−k

) (
qn − qn−k+1

)
...
(
qn − qn−1

)
=
(
qk − 1

)
qn−k

(
qk−1 − 1

)
qn−k+1... (q − 1) qn−1

=
(
qk − 1

) (
qk−1 − 1

)
... (q − 1) q(n−k)+(n−k+1)+...+(n−1)

=
(
qk − 1

) (
qk−1 − 1

)
... (q − 1) qk(n−k)+ 1

2k(k−1)

since we use the usual trick to evaluate twice the exponent:

(n− k) + (n− k + 1) + ...+ (n− 1)
+(n− 1) + (n− 2) + ...+ (n− k)
= (2n− k − 1) + ...+ (2n− k − 1)

= k (2n− k − 1) = 2k (k + (n− k))− k2 − k = 2k (n− k) + k2 − k.

Now the number of ordered basis set of a k-dimensional space is:(
qk − 1

) (
qk−1 − 1

)
... (q − 1) q

1
2k(k−1)

so dividing by that gives:

qk(n−k)

The number of k-dimensional subspaces disjoint from any (n− k)-dimensional subspace.13

Note that taking q → 1 yields the fact that an (n− k)-element subset of an n-element set has a
unique k-element subset disjoint from it.

Hence in the q-analog formula, the binomial coeffi cient
(
n−1
k

)
is replaced by the Gaussian bino-

mial coeffi cient
(
n−1
k

)
q
times qk(n−k). Then the rest of the proof proceeds as usual. Let D∗q (n,m)

denote the number of DSDs of V with m blocks with one block containing any designated v∗. Then
we can mimic the proof of the formula S (n,m) =

∑n−1
k=0

(
n−1
k

)
S (k,m− 1) to derive the following:

Proposition 24 Given a designated nonzero vector v∗ ∈ V , the number of DSDs of V with m blocks
one of which contains v∗ is:

D∗q (n,m) =
∑n−1
k=0

(
n−1
k

)
q
qk(n−k)Dq (k,m− 1). �

Note that it is Dq (k,m− 1), and not D∗q (k,m− 1), on the right-hand side of the formula. Further
note that D∗q (n,m) is the q-analog of Stirling numbers of second kind S (n,m) in the sense that

taking q = 1 gives the right-hand side of:
∑n−1
k=0

(
n−1
k

)
S (k,m− 1) since D1 (k,m− 1) = S (k,m− 1),

and the left-hand side is the same as S (n,m) since every set partition of an n-element with m blocks
has to have a block containing some designated element u∗. Thus both Dq (n,m) and D∗q (n,m) can
be seen as q-analogs of the Stirling numbers S (n,m).

Since the Bell numbers can be obtained from the Stirling numbers of the second time as: B (n) =∑n
m=1 S (n,m), there is clearly a similar formula for the Bell numbers:

13This was proven using Möbius inversion on the lattice of subspaces by Crapo [11].
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B (n) =
∑n−1
k=0

(
n−1
k

)
B (k)

Summation formula for B (n).

This formula can also be directly proven using the designated element u∗ reasoning, so it can
be similarly be extended to computing D∗q (n), the number of DSDs of V with a block containing a
designated nonzero vector v∗.

Proposition 25 Given any designated nonzero vector v∗ ∈ V , the number of DSDs of V with a
block containing v∗ is:

D∗q (n) =
∑n−1
k=0

(
n−1
k

)
q
qk(n−k)Dq (k). �

Note that D∗q (n) is the q-analog of the Bell numbers B (n) in the sense that taking q = 1 yields the
classical summation formula for B (n) since D1 (k) = B (k) and every partition has to have a block
containing a designated element u∗. Thus both Dq (n) and D∗q (n) can be seen as q-analogs of the
Bell numbers B (n).

Furthermore the D∗ numbers have the expected relation:

Corollary 15 D∗q (n) =
∑n
m=1D

∗
q (n,m). �

Since we also have formulas for the total number of DSDs, we have the number of DSDs where
the designated element is not in one of the blocks: Dq (n,m)−D∗q (n,m) and Dq (n)−D∗q (n).

5.5 Computing initial values for q = 2

For a natural interpretation for the D∗-numbers, consider the pedagogical model of quantum me-
chanics using finite-dimensional vector spaces V over GF (2) = Z2, called "quantum mechanics over
sets," QM/Sets [17]. The "observables" or attributes are defined by real-valued functions on basis
sets. Given a basis set U = {u1, ..., un} for V = Zn2 ∼= ℘ (U), a real-valued attribute is a function
f : U → R. It determines a set partition

{
f−1 (r)

}
r∈f(U)

on U and a DSD
{
℘
(
f−1 (r)

)}
r∈f(U)

on ℘ (U). In full QM, the important thing about an "observable" is not the specific numerical
eigenvalues, but its eigenspaces for distinct eigenvalues, and that information is in the DSD of its
eigenspaces. The attribute f : U → R cannot be internalized as an operator on ℘ (U) ∼= Zn2 (unless
its values are 0, 1), but it nevertheless determines the DSD

{
℘
(
f−1 (r)

)}
r∈f(U)

which is suffi cient to
pedagogically model many quantum results. Hence a DSD can be thought of an "abstract attribute"
(without the eigenvalues) with its blocks serving as "eigenspaces." Then a natural question to ask
is given any nonzero vector v∗ ∈ V = Zn2 , how many "abstract attributes" are there where v∗ is an
"eigenvector"—and the answer is D∗2 (n). And D∗2 (n,m) is the number of "abstract attributes" with
m distinct "eigenvalues" where v∗ is an "eigenvector."

In the case of n = 1, 2, 3, the DSDs can be enumerated "by hand" to check the formulas, and
then the formulas can be used to compute higher values of D2 (n,m) or D2 (n).

All vectors in the n-dimensional vector space Zn2 over GF (2) = Z2 will be expressed in terms of
a computational basis {a} , {b} , ..., {c} so any vector S in Zn2 would be represented in that basis as a
subset S ⊆ U = {a, b, ..., c}. The addition of subsets (expressed in the same basis) is the symmetric
difference: for S, T ⊆ U ,

S + T = (S − T ) ∪ (T − S) = (S ∪ T )− (S ∩ T ) .

Since all subspaces contain the zero element which is the empty set ∅, it will be usually suppressed
when listing the elements of a subspace. And subsets like {a} or {a, b} will be denoted as just a and
ab. Thus the subspace {∅, {a} , {b} , {a, b}} is denoted as {a, b, ab}. A k-dimensional subspace has 2k

elements so only 2k − 1 are listed.
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For n = 1, there is only one nonzero subspace {a}, i.e., {∅, {a}}, and D2 (1, 1) = D2 (1) = 1.
For n = 2, the whole subspace is {a, b, ab} and it has three bases {a, b}, {a, ab}, and {b, ab}. The

formula for the number of bases gives D2 (2, 2) = 3. The only D2 (2, 1) = 1 DSD is the whole space.
For n = 3, the whole space {a, b, c, ab, ac, bc, abc} is the only D2 (3, 1) = 1 and indeed for any n

and q, Dq (n, 1) = 1. For n = 3 and m = 3, D2 (3, 3) is the number of (unordered) bases of Z3
2 (recall{

n
n

}
q

= 1 for all q). Since we know the signature, i.e., a1 = 3 and otherwise ak = 0, we can easily
compute D2 (3, 3):

1
a1!a2!...an!

[n]q !

([1]q !)
a1 ...([n]q !)

an q
1
2 (n2−

∑
k akk

2)

= 1
3!

[3]2!

([1]2)
3 2

1
2 (32−3) = 1

6
7×3

1 2
1
2 (6) = 28 = D2(3, 3).

And here they are in Table A.1.

{a, b, c} {a, b, ac} {a, b, bc} {a, b, abc}
{a, c, ab} {a, c, bc} {a, c, abc} {a, ab, ac}
{a, ab, bc} {a, ab, abc} {a, ac, bc} {a, ac, abc}
{b, c, ab} {b, c, ac} {b, c, abc} {b, ab, ac}
{b, ab, bc} {b, ab, abc} {b, ac, bc} {b, bc, abc}
{c, ab, ac} {c, ab, bc} {c, ac, bc} {c, ac, abc}
{ab, ac, abc} {ab, bc, abc} {ac, bc, abc} {bc, ab, abc}

Table A.1: All bases of Z3
2.

For n = 3 and m = 2, D2 (3, 2) is the number of binary DSDs, each of which has the signature
a1 = a2 = 1 so the total number of binary DSDs is:

D2 (3, 2) = 1
1!1!

[3]2!

([1]!)1([2]!)1
2
1
2 (32−1−22) = 7×3

3 2
1
2 (4) = 7× 4 = 28.

And here they are in Table A.2:

{{a} , {b, c, bc}} {{a} , {ab, ac, bc}} {{a} , {c, ab, abc}} {{a} , {b, ac, abc}}
{{b} , {a, c, ac}} {{b} , {ab, ac, bc}} {{b} , {c, ab, abc}} {{b} , {a, bc, abc}}
{{ab} , {b, c, bc}} {{ab} , {a, bc, abc}} {{ab} , {b, ac, abc}} {{ab} , {a, c, ac}}
{{c} , {a, b, ab}} {{c} , {ab, ac, bc}} {{c} , {a, bc, abc}} {{c} , {b, ac, abc}}
{{ac} , {a, b, ab}} {{ac} , {a, bc, abc}} {{ac} , {c, ab, abc}} {{ac} , {b, c, bc}}
{{bc} , {a, b, ab}} {{bc} , {b, ac, abc}} {{bc} , {c, ab, abc}} {{bc} , {a, c, ac}}
{{abc} , {a, b, ab}} {{abc} , {b, c, bc}} {{abc} , {a, c, ac}} {{abc} , {ab, ac, bc}}

Table A.2: All binary DSDs for Z3
2.

The above table has been arranged to illustrate the result that any given k-dimensional subspaces
has qk(n−k) subspaces disjoint from it. For n = 3 and k = 1, each row gives the 22 = 4 subspaces
disjoint from any given 1-dimensional subspace represented by {a}, {b},..., {abc}. For instance, the
four subspaces disjoint from the subspace {ab} (shorthand for {∅, {a, b}}) are given in the third row
since those are the "complementary" subspaces that together with {ab} form a DSD.

For q = 2, the initial values up to n = 6 of D2 (n,m)are given the following Table A.3.

n\m 0 1 2 3 4 5 6

0 1
1 0 1
2 0 1 3
3 0 1 28 28
4 0 1 400 1, 680 840
5 0 1 10, 416 168, 640 277, 760 83, 328
6 0 1 525, 792 36, 053, 248 159, 989, 760 139, 991, 040 27, 998, 208
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Table A.3: D2 (n,m) with n,m = 1, 2, ..., 6.

The seventh row D2 (7,m) for m = 0, 1, ..., 7 is: 0, 1, 51116992, 17811244032, 209056841728,
419919790080, 227569434624, and 32509919232 which sum to D2 (7).

The row sums give the values of D2 (n) for n = 0, 1, 2, ..., 7 in Table A.4.

n D2 (n)

0 1
1 1
2 4
3 57
4 2, 921
5 540, 145
6 364, 558, 049
7 906, 918, 346, 689

Table A.4: D2 (n) for n = 0, 1, ..., 7.

We can also compute the D∗ examples of DSDs with a block containing a designated element.
For q = 2, the D∗2 (n,m) numbers for n,m = 0, 1, ..., 7 are given in the following Table A.5.

n\m 0 1 2 3 4 5 6 7

0 1
1 0 1
2 0 1 2
3 0 1 16 12
4 0 1 176 560 224
5 0 1 3456 40000 53760 13440
6 0 1 128000 5848832 20951040 15554560 2666496
7 0 1 9115648 1934195712 17826414592 30398054400 14335082496 1791885312

Table A.5: Number of DSDs D∗2 (n,m) containing any given nonzero vector v∗

For n = 3 and m = 2, the table says there are D∗2 (3, 2) = 16 DSDs with 2 blocks one of which
contains a given nonzero vector, say v∗ = ab which represents {a, b}, and here they are in Table A.6.

{{ab} , {b, c, bc}} {{ab} , {a, bc, abc}} {{ab} , {b, ac, abc}} {{ab} , {a, c, ac}}
{{c} , {a, b, ab}} {{c} , {ab, ac, bc}} {{ac} , {c, ab, abc}} {{bc} , {c, ab, abc}}
{{ac} , {a, b, ab}} {{a} , {ab, ac, bc}} {{a} , {c, ab, abc}} {{abc} , {a, b, ab}}
{{bc} , {a, b, ab}} {{b} , {ab, ac, bc}} {{b} , {c, ab, abc}} {{abc} , {ab, ac, bc}}
Table A.6: Two-block DSDs of ℘ ({a, b, c}) with a block containing ab = {a, b}.

The table also says there are D∗2 (3, 3) = 12 basis sets containing any given nonzero vector which we
could take to be v∗ = abc = {a, b, c}, and here they are in Table A.7.

{a, b, abc} {b, ab, abc} {a, c, abc} {b, bc, abc}
{a, ab, abc} {a, ac, abc} {b, c, abc} {c, ac, abc}
{ab, ac, abc} {ab, bc, abc} {ac, bc, abc} {bc, ab, abc}

Table A.7: Three-block DSDs (basis sets) of ℘ ({a, b, c}) with a basis element abc = {a, b, c}.

Summing the rows in the D∗2 (n,m) Table A.5 gives the values for D∗2 (n) for n = 0, 1, ..., 7 in
Table A.8.
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n D∗2 (n)

0 1
1 1
2 3
3 29
4 961
5 110, 657
6 45, 148, 929
7 66, 294, 748, 161

Table A.8: D∗2 (n) for n = 0, 1, ..., 7.

The integer sequence D2 (n, n) for n = 0, 1, 2, ... is known as: A053601"Number of bases of
an n-dimensional vector space over GF (2)" in the On-Line Encyclopedia of Integer Sequences
(https://oeis.org/). The sequences defined and tabulated here for q = 2 have been added to the
Encyclopedia as: A270880 [D2(n,m)], A270881 [D2 (n)], A270882 [D∗2 (n,m)], A270883 [D∗2 (n)].
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