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Chapter 6 
Double-Entry Bookkeeping: Mathematical Formulation and 
Generalization 

Introduction 

Double-entry bookkeeping illustrates one of the most astonishing examples of intellectual 

insulation between disciplines, in this case, between accounting and mathematics.  Double-entry 

bookkeeping (DEB) was developed during the fifteenth century and was first recorded in 1494 as 

a system by the Italian mathematician Luca Pacioli [1494].  Double-entry bookkeeping has been 

used for several centuries in the accounting systems of the market economies throughout the 

world.  Incredibly, however, the mathematical formulation for DEB is not known, at least not in 

the field of accounting.   

The mathematical basis behind DEB (algebraic operations on ordered pairs of numbers) 

was developed in the nineteenth century by Sir William Rowan Hamilton as an abstract 

mathematical construction to deal with complex numbers and fractions [Hamilton 1837].  The 

particular example of the ordered pairs construction that is relevant to DEB, called the "group of 

differences," is the one used in undergraduate algebra courses to construct a number system with 

negative numbers ("additive inverses" in technical terms) by using operations on ordered pairs of 

positive numbers (including zero).  All that is required to grasp the connection with DEB is to 

make the identification: 

ordered pairs of numbers in construction of positive and negative numbers 

= two-sided T-accounts of DEB (debits on the left side and credits on the right side).   

In view of this identification, the "group of differences" will be called the Pacioli group.   

In spite of some attention to DEB by mathematicians [e.g., DeMorgan 1869, Cayley 

1894, and Kemeny et al. 1962], this connection has been little noticed in mathematics.  One 

(perhaps solitary) exception is the following passage in a semi-popular book by D. E. 

Littlewood. 
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The bank associates two totals with each customer's account, the total of moneys 

credited and the total of moneys withdrawn.  The net balance is then regarded as 

the same if, for example, the credit amounts of £102 and the debit £100, as if the 

credit were £52 and the debit £50.  If the debit exceeds the credit the balance is 

negative. 

 This model is adopted in the definition of signed integers.  Consider pairs 

of cardinal numbers (a, b) in which the first number corresponds to the debit, and 

the second to the credit.  [1960, 18] 

With this exception, the author has not been able to find a single mathematics book, elementary 

or advanced, popular or esoteric, which notes that the ordered pairs of the group of differences 

construction are the T-accounts used in the business world for about five centuries.  And this 

mathematical basis for DEB is totally unknown in the "parallel universe" of accounting. 

This almost complete lack of cross-fertilization between mathematics and accounting is a 

topic of some interest for intellectual history and the sociology of knowledge.  The story is 

probably rather simple from the mathematics side.  Double-entry bookkeeping is apparently too 

mundane to hold the sustained attention of mathematicians.  The real question lies on the 

accounting side.  Over the last century, how could professional accountants and accounting 

professors have failed to find the mathematical basis for DEB even though it was part of 

undergraduate algebra? 

One acid test of a mathematical formulation of a theory is the question of whether or not 

it facilitates the generalization of the theory.  Normal bookkeeping does not deal with 

incommensurate physical quantities; everything is expressed in the common units of money.  A 

long-standing question is the possible generalization of DEB to deal with incommensurates with 

no common measure of value.   

In the literature on the "mathematics of accounting" there was a proposed "solution" to 

this question, a system of physical accounting that was published repeatedly [see Ijiri 1965, 
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1966, and 1967] and was largely accepted by the accounting community.  In this system, most of 

the structure of DEB was lost: 

• there was no balance sheet equation, 

• there were no equity or proprietorship accounts, 

• the temporary or nominal accounts could not be closed, and 

• the "trial balance" did not balance. 

It is common for certain aspects of a theory to be lost in a generalization of the theory.  

The accounting community had apparently accepted the failure of all these features of DEB as 

the necessary price to be paid to generalize DEB to incommensurate physical quantities.  For 

instance, the systems of "Double-entry multidimensional accounting" previously published in the 

accounting literature [see also Charnes et al. 1972, 1976, or Haseman and Whinston 1976] had 

acquiesced in the absence of the balance-sheet equation. 

For instance, the convenient idea of an accounting identity is lost since the 

dimensional and metric comparability it assumes is no longer present except under 

special circumstances. [Ijiri 1967, 333] 

When DEB is mathematically formulated using the group of differences, then the generalization 

to vectors of incommensurate physical quantities is immediate and trivial.  All of the normal 

features of DEB (such as the balance-sheet equation, the equity account, the temporary accounts, 

and the trial balance) are preserved in the generalization [see Ellerman 1982, 1986].  Thus the 

"accepted" generalized model of DEB was simply a failed attempt at generalization which had 

been received as a successful generalization that unfortunately had to "sacrifice" certain features 

of DEB.   

In spite of the results that can be obtained from a simple border crossing between 

mathematics and accounting, the successful mathematical treatment and generalization of 

double-entry bookkeeping (first published over a decade ago) will take years if not decades to 

become known and understood in accounting.   
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The Pacioli Group 

We will develop the Pacioli group using vectors (ordered lists of numbers) for 

multidimensional accounting.  The usual case of scalar accounting can be identified with the 

special case using one dimensional vectors.  A vector x = (x1,...,xn) is non-negative if and only if 

all its components xi are non-negative (positive or zero).  The ordered pairs of non-negative 

vectors will be called T-accounts and will be denoted as follows for vectors d and c. 

[ d // c ] = [ debit vector // credit vector ] 

Equation 6.1. Definition of T-Accounts 

The left-hand side (LHS) vector d is the debit entry and the right-hand side (RHS) vector c is the 

credit entry.  A fraction is also an ordered pair of whole numbers or integers where the two 

integers are the numerator and denominator of the fraction. 

The algebraic operations on T-accounts are much like the operations on fractions except 

that addition is substituted for multiplication.  In order to illustrate the additive-multiplicative 

analogy between T-accounts and fractions, the basic definitions will be developed in parallel 

columns. 

 
T-accounts add together by adding debits to debits and 

credits to credits 
[ w // x ] + [ y // z ] = [ w+y // x+z ]. 

The identity element for addition is the zero T-account [ 0 // 
0 ].  Given two T-accounts [ w // x ] and [ y // z ], the cross-
sums are the two vectors obtained by adding the credit entry 
in one T-account to the debit entry in the other T-account.  
The equivalence relation between T-accounts is defined by 
setting two T-accounts equal if their cross-sums are equal: 

[ w // x ] = [ y // z ]  if w+z = x+y. 
The negative or additive inverse of a T-account is obtained 

by reversing the debit and credit entries: 
– [ w // x] = [ x // w ]. 

Given two vectors x = (x1,...,xn) and y = (y1,...,yn), let 
max(x,y) be the vector with the maximum of xi and yi as its 

ith component, and let min(x,y) be the vector with the 
minimum of xi and yi as its ith component.   

 

Fractions multiply together by multiplying numerator with 
numerator and denominator with denominator 

(w/x)(y/z) = (wy/xz). 
The identity element for multiplication is the unit fraction 
1/1.  Given two fractions w/x and y/z, the cross-multiples 

are the two integers obtained by multiplying the numerator 
of one faction with the denominator of the other fraction.  
The equivalence relation between fractions is defined by 

setting two fractions equal if their cross-multiples are equal: 
w/x = y/z if wz = xy. 

The multiplicative inverse of a fraction is obtained by 
reversing the numerator and denominator: 

(w/x)–1 = x/w. 
Given two integers w and x, let lcm(w,x) be the least 
common multiple of w and x, and let gcd(w,x) be the 

greatest common divisor of w and x (the largest integer 
dividing both).   
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Two non-negative vectors x and y are said to be disjoint if 
min(x,y) = 0.  A T-account [x // y] is in reduced form if x 
and y are disjoint.  Every T-account [x // y] has a unique 

reduced representation  
[x–min(x,y) // y–min(x,y)]. 

 
Consider the T-account  
[(12, 3, 8) // (10, 5, 4)]. 

The minimum of the debit and credit vectors is (10, 3, 4) so 
the reduced form representation is  

[(2, 0, 4) //(0, 2, 0)]. 

Two integers w and x are said to be relatively prime if 
gcd(w,x) = 1.  A fraction w/x is in lowest terms if w and x 

are relatively prime.  Each fraction w/x has a unique 
representation in lowest terms 

(w/gcd(w,x))/(x/gcd(w,x)). 
 

Consider the fraction 
28/35. 

The greatest common divisor of the numerator and 
denominator is 7 so the fraction in lowest terms is 

4/5. 

 

That completes the construction of the Pacioli group Pn where each element is an ordered 

pair [ x // y ] of non-negative n-dimensional vectors.  The Pacioli group Pn is isomorphic with all 

of Rn (the set of all n-vectors with positive and negative components) under two isomorphisms: 

the debit isomorphism, which maps [ w // x ] to w–x, and the credit isomorphism, which maps 

[ w // x ] to x–w.  In order to translate from T-accounts  [x // y] to general vectors z, one only 

need specify whether to use the debit or credit isomorphism.  This will be done by labeling the 

T-account as debit balance or credit balance.  Thus if a T-account  [x // y] is debit balance, the 

corresponding vector is x–y, and if it is credit balance, then the corresponding vector is y–x.   

The Double-entry Method 

The double-entry method of accounting is a method of using the Pacioli group to perform 

additive algebraic operations on equations such as the conventional balance sheet equation: 

Assets = Liabilities + Net Worth.   

Equation 6.2. Balance-Sheet Equation 

Vector equations are first encoded in the Pacioli group.  A T-account equal to the zero T-

account [0 // 0] is called a zero-account.  Equations encode as zero-accounts.  Since the vectors 

in a T-account must be non-negative, we must first develop a way to separate out the positive 

and negative components of a vector.  The positive part of a vector x is x+ = max(x,0), the 

maximum of x and the zero vector [note that "0" is used depending on the context to refer to the 

zero scalar or the zero vector].  The negative part of x is x– = –min(x,0), the negative of the 
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minimum of x and the zero vector.  Both the positive and negative parts of a vector x are non-

negative vectors.  Every vector x has a "Jordan decomposition" x = x+ – x–. 

Given any equation in Rn, w + ... + x = y + ... + z, each left-hand side (LHS) vector w is 

encoded as a debit-balance T-account [w+ // w–] and each right-hand side (RHS) vector y is 

encoded as a credit-balance T-account [y– // y+].  Then the original equation holds if and only the 

sum of the encoded T-accounts is a zero-account: 

w + ... + x = y + ... + z 

if and only if 

 [w+ // w–] + ... + [x+ // x–] + [y– // y+] + ... + [z– // z+] is a zero-account. 

Equation 6.3. Encoding an Equation as a Zero T-Account 

Given the equation, the sum of the encoded T-accounts is called the equational zero-

account of the equation.  Since only plus signs can appear between the T-accounts in an 

equational zero-account, the plus signs can be left implicit.  The listing of the T-accounts in an 

equational zero-account (without the plus signs) is the ledger. 

Changes in the various terms or "accounts" in the beginning equation are recorded as 

transactions.  Transactions must be recorded as valid algebraic operations which transform 

equations into equations.  Since equations encode as zero-accounts, a valid algebraic operation 

would transform zero-accounts into zero-accounts.  There is only one such operation in the 

Pacioli group: add on a zero-account.  Zero plus zero equals zero.  The zero-accounts 

representing transactions are called transactional zero-accounts.  The listing of the transactional 

zero-accounts is the journal. 

A series of valid additive operations on an equation can then be presented in the 

following standard scheme: 

 Beginning Equational Zero-Account 

 + Transactional Zero-Accounts 

 = Ending Equational Zero-Account 

or, in more conventional terminology, 
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     Beginning Ledger  

  + Journal  

  = Ending Ledger. 

The process of adding the transactional zero-accounts to the initial ledger to obtain the 

ledger at the end of the accounting period is called posting the journal to the ledger.  The fact 

that a transactional zero-account is equal to [0 // 0] is traditionally expressed as the double-entry 

principle that transactions are recorded with equal debits and credits.  The summing of the debit 

and credit sides of a computed equational zero-account to check that it is indeed a zero-account 

is traditionally called the trial balance. 

It remains to decode the ending equational zero-account to obtain the equation that results 

from the algebraic operations represented in the transactions.  The T-accounts in an equational 

zero-account can be arbitrarily partitioned into two sets DB (debit balance) and CB (credit 

balance).  T-accounts [w // x] in DB are decoded as w–x on the left side of the equation, and T-

accounts [w // x] in CB are decoded as x–w on the right side of the equation.  Given a zero-

account, this procedure yields an equation.  In an accounting application, the T-accounts in the 

final equational zero-account would be partitioned into sets DB and CB according to the side of 

the initial equation from which they were encoded.  

To illustrate encoding and decoding equations, consider the vector equation 

(6, –3, 10) + (–2, 5, 2) = (4, 2, 8). 

Equation 6.4. Sample Vector Equation to be Encoded 

It encodes as the equational zero-account 

[(6, 0, 10) // (0, 3, 0)] + [(0, 5, 2) // (2, 0, 0)] + [(0, 0, 0) // (4, 2, 8)]. 

Figure 6.1. Equation Encoded as a Zero T-Account 

To illustrate decoding, consider another equational zero-account, 

[(8, 1, 4) // (2, 3, 6)] + [(1, 13, 3) // (5, 4, 2)] + [(2, 1, 3) // (4, 8, 2)]. 

Figure 6.2  Sample Zero T-Account to be Decoded 
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Let the first two T-accounts be debit balance and the third one credit balance.  Then the 

equational zero-account decodes as the vector equation 

(6, –2, –2) + (–4, 9, 1) = (2, 7, –1). 

Equation 6.5. Decoded Equation 

Given the additive-multiplicative analogy between the double-entry T-accounts and the 

double-entry fractions, one could develop a whole system of multiplicative double-entry 

bookkeeping [see Ellerman 1982, 58-66 for the theory with an example]. 

A Simple Example of Value Accounting 

Consider an example of a company with the simplified initial balance sheet equation: 

 Assets = Liabilities + Equity 
 15,000 = 10,000 + 5,000. 

Equation 6.6. Beginning Scalar Balance Sheet 

The balance sheet equation encodes as an equational zero-account which, by leaving out 

the plus signs, becomes the following initial ledger of T-accounts. 

 Assets Liabilities Equity 
 [15,000 // 0] [0 // 10,000] [0 // 5,000] 

Figure 6.3 Beginning Ledger of T-Accounts  

A transaction will change two or more of the accounts.  The fact that a transaction 

changes two or more accounts has nothing to do with the "doubleness" of double-entry 

bookkeeping.  DEB is a system of recording transactions that uses the double-sided T-accounts 

of positive numbers (or the double-sided fractions in the multiplicative case).  Any other way of 

recording the transaction (e.g., using positive and negative numbers) would also have to change 

two or more accounts in an equation.  If one item in a equation changes, then clearly one or more 

other items in the equation must also change in order for the equation to still be true. 

Consider three transactions in a productive firm. 

1. $1,200 of input inventories are used up in production. 
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2. $1,500 of product is produced and sold. 

3. $800 principal payment is made on a loan. 

Each transaction is then encoded as a transactional zero-account and added to the equational 

zero-account. 
 Assets Liabilities Equity 
 [15,000 // 0] [0 // 10,000] [0 // 5,000] 
1. [0 // 1,200]  [1,200 // 0] 
2. [1,500 // 0]  [0 // 1,500] 
3. [0 // 800] [800 // 0] 
 ========= ========= ========= 
Totals [16,500 // 2,000] [800 // 10,000] [1,200 // 6,500] 

= (in reduced form) [14,500 // 0] [0 // 9,200] [0 // 5,300]. 

Figure 6.4. Initial Ledger + Journal = Ending Ledger 

Each T-account is decoded according to how whether it was encoded as debit balance or 

credit balance to obtain the ending balance sheet equation. 

 Assets = Liabilities + Equity 
 14,500 = 9,200 + 5,300. 

Equation 6.7. Ending Balance-Sheet Equation 

A Simple Example of Multidimensional Property Accounting 

When the scalars (single non-negative numbers) of value accounting are replaced by non-

negative vectors, then the vectors can be interpreted as representing the physical amounts of 

different types of property.  We will consider a simple model where there are only three types of 

property: cash, outputs, and inputs.  These goods will be listed in that order in each three-

dimensional vector. 

Let the initial asset vector be (9000, 40, 50) so the firm has $9000 cash, 40 units of the 

output in inventory, and 50 units of the input in inventory.  The firm also has a $10000 liability 

represented by the vector (10000, 0, 0) so the equity vector (Assets – Liabilities) is given by the 

vector (–1000, 40, 50).  Thus the initial balance sheet (vector) equation is: 
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 Assets = Liabilities + Equity 
 (9000, 40, 50) = (10000, 0, 0) + (–1000, 40, 50). 

Equation 6.8. Initial Vector Balance-Sheet Equation 

This encoded as the following equational zero-account or ledger: 

 Assets Liabilities Equity 
 [(9000, 40, 50)//(0, 0, 0)] [(0, 0, 0)//(10000, 0, 0)] [(1000, 0, 0)//(0, 40, 50)]. 

Figure 6.5. Initial Vector T-Accounts in Ledger 

The underlying production process is very simple.  Two units of the inputs are combined 

to make one unit of the output.  Hence the following physical transactions underlie the previous 

value transactions (where we split the production and sale of the outputs are the transactions 2a 

and 2b). 

1. 30 units of the inputs are used up in production. 

2a. 15 units of the product are produced. 

2b. 15 units of the product are sold for $100 each. 

3. $800 principal payment is made on a loan. 

These transactions are then encoded as transactional zero-accounts and added to the 

ledger T-accounts. 
 Assets Liabilities Equity 
 [(9000, 40, 50)//(0, 0, 0)] [(0, 0, 0)//(10000, 0, 0)] [(1000, 0, 0)//(0, 40, 50)]. 
1. [(0, 0, 0)//(0, 0, 30)]  [(0, 0, 30)//(0, 0, 0)] 
2a. [(0, 15, 0)//(0, 0, 0)]  [(0, 0, 0)//(0, 15, 0)] 
2b. [(1500, 0, 0)//(0, 15, 0)]  [(0, 15, 0)//(1500, 0, 0)] 
3. [(0, 0, 0)//(800, 0, 0)] [(800, 0, 0)//(0, 0, 0)] 
 ================= ================= ================= 
 [(10500, 55, 50)//(800, 15, 30)] [(800, 0, 0)//(10000, 0, 0)] [(1000, 15, 30)//(1500, 55, 50)] 
= [(9700, 40, 20)//(0, 0, 0)] [(0, 0, 0)//(9200, 0, 0)] [(0, 0, 0)//(500, 40, 20)] 

Figure 6.6. Initial Vector Ledger + Journal = Ending Vector Ledger 

where the last line of ledger accounts is in reduced form.  The reduced accounts are then decoded 

to obtain the ending balance-sheet equation: 
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 Assets = Liabilities + Equity 
 (9700, 40, 20) = (9200, 0, 0) + (500, 40, 20). 

Equation 6.9. Ending Vector Balance-Sheet Equation 

Given a set of prices or valuation coefficients, the vectors can be evaluated so that the 

vector accounts of property accounting collapse to the scalar accounts of value accounting.  For 

instance, suppose that the prices per unit are (cash, output, input) = (1, 100, 40).  Multiplying the 

physical quantities times their price and adding up yields the balance-sheet equation of the 

previous example of value accounting. 

 Assets = Liabilities + Equity 
 14,500 = 9,200 + 5,300. 

Equation 6.10. Scalar Equation = Price Vector times Vector Equation 

Thus we see how property accounting can use double-entry accounting with vectors to 

trace out the property transactions that underlie the value transactions recorded in conventional 

accounting. 
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