

CHAP_7.docx1

The Semantics Differentiation of Minds and Machines

Chapter 7 from: Ellerman, David 1995. Intellectual Trespassing as a Way of Life: Essays in

Philosophy, Economics, and Mathematics. Lanham MD: Rowman & Littlefield, pp. 139-154.

Introduction

After several decades of debate, a definitive differentiation between minds and machines

seems to be emerging into view. The differentiating criterion emerges from logic as well as

computer science itself. Computing machines (e.g., Turing machines) carry out formal processes

of symbol manipulation. Symbols are manipulated solely on the basis of their form, not their

intended interpretation. Such symbol-crunching processes are usually called "syntactic" or

"formal computational."

This leads to the specification of a process that could not be duplicated on a computer,

that is, a process that operates on symbols not according to their syntactic form but according to

their semantic meaning. Since such processes would use the meaning or intended interpretation

of the symbols, they are semantic rather than syntactic in character. One simple example is the

process of logical reasoning in the human mind. The best result that could be obtained with a

computer is simulation (not duplication) by programming the computer to formally manipulate

the symbols in a manner that is correct or appropriate in view of their intended interpretation.

Hence the basic tenet of computer science that computers are formal symbol manipulators yields

this "semantics differentiation" between minds and computers.

There are other roads that lead to the same principle. One is the philosophy of mind. A

symbol does not have an intrinsic meaning; it is not intrinsically "about something." The

semantic content or meaning of a symbol is ascribed to it by a mind. My thought of my coffee

cup, however, does have an intrinsic aboutness. It is not simply interpreted as being about the

CHAP_7.docx2

coffee cup (e.g., by a third party); the thought is about the coffee cup. This intrinsic "aboutness"

or "directedness" of most mental states is called "intentionality." The semantics of an intentional

mental state is builtin; the semantics of a symbol must be externally imputed or ascribed to it.

Intentionality cannot be duplicated by formal symbol manipulation processes alone (e.g., by

computers) since those processes are, by definition, independent of the symbols' aboutness.

Computers lack inherent intentionality.

When approached from the philosophy of mind, the semantics differentiation would be

better called the "intentionality differentiation." It has been expounded and ably defended by

John Searle [1980, 1981, 1982, 1983, 1984, ...]. A precomputer version of the intentionality

thesis was used by Franz Brentano as a mental-physical differentiation [see McAlister 1976].

The notion of intentionality itself descends from the Middle Ages [see Spiegelberg in McAlister

1976, or "Intentionality" in Edwards 1967]. The notion was also central to the thought of

Edmund Husserl and the subsequent philosophy of phenomenology [Dreyfus 1982]. Searle's

book [1983] seems based on the principle that intentionality is too important to be left to

phenomenologists. The book presents a path-breaking treatment of intentionality, which does

not require one to learn the exotic proprietary vocabulary of the phenomenological literature.

The Semantics Differentiation

My treatment of the semantics/intentionality differentiation will be based on the approach

from semantics, not intentionality. The notion of "intentionality" is foreign to computer science.

No new theory of intentionality will be presented here. Nor is a complete theory of intentionality

needed for a differentiation of minds and machines. My point is that the rigorous notions of

syntax and semantics drawn from mathematical logic, while far short of a theory of

intentionality, are nevertheless sufficient to illustrate the differentiation of minds from machines.

The syntax-semantics distinction is familiar to computer scientists, mathematicians, and

philosophers from modern logic: formal syntax versus truth-functional or model-theoretic

CHAP_7.docx3

semantics. A number of semantic theories have been developed for various special purposes:

Kripke semantics, functorial semantics, possible-world semantics, Montague semantics,

denotational semantics, situational semantics, and so forth. The arguments for the semantics

differentiation will be illustrated using the familiar and noncontroversial semantics of

propositional and first-order logic.

The semantics differentiation between minds and machines is internal to computer

science itself. The operations of a Turing machine are formal symbol manipulations, and all the

operations of a general purpose digital computer can be characterized as Turing machine

operations (subject to practical limitations such as memory and time). Computers are syntactical

engines whose operations always manipulate symbols solely on the basis of their form, not their

intended interpretation. A process that did operate on symbols using their intended interpretation

could not be duplicated on a computer. Thus the semantics differentiation is based on the

computer science characterization of "what computers do."

This semantics differentiation is not "new"; it is essentially a "folk theory" deriving from

work in logic (formal syntax, recursive function theory, and model theory) that dates from the

early part of this century. It doesn't need to be rediscovered; it needs to be understood. There

are several systematic reasons why the semantics differentiation has been misunderstood. Much

of my task is to attempt to resolve these misunderstandings.

The Semantics Differentiation is Nonfunctionalist

Semantics is not differentiated from syntax on behaviorist or functionalist grounds.

There is a range of cases where semantics and syntax yield the same "behavior." Consider any

consistent and complete formal theory such as an axiomatization of propositional or first-order

logic. In an axiom system for first-order logic, the semantic notion of validity and the syntactic

notion of theoremhood exhibit the same "behavior" in the sense that they specify the same set of

first-order formulas. Under the intended interpretation of the logical symbols, the axioms are

CHAP_7.docx4

valid and the formal rules of inference preserve validity, so all the theorems are valid. By the

completeness theorem, all valid formulas can be derived as theorems. Hence the semantics and

the syntax of first-order logic yield the same set of formulas (i.e., the same "behavior" or

"function"). Yet no one would interpret this completeness result as proving that the semantics

and syntax of first-order logic are the same thing. The completeness theorem does not erase the

differentiation between semantics and syntax. Indeed, without the differentiation there would

have been no equivalence to prove.

It would be a simple misunderstanding to think that the completeness theorem "proves"

that validity is a syntactic notion; it only proves that there is a functionally equivalent syntactic

notion. Yet, time and time again, one finds the analogous misunderstanding in the artificial

intelligence (AI) literature. If a mental (semantic) operation can be successfully programmed on

a computer (by definition, a syntactic device), then it is claimed this would show that the mental

operation was a "formal computable" operation, i.e., was syntactic. Nothing of the sort follows.

First-order validity has been perfectly "programmed" in the formal axiomatizations of first-order

logic, but that hardly proves validity is a syntactic notion. What it does show is that the

differentiation between validity and theoremhood in first-order logic cannot be made on

behavioral or functional grounds.

This line of argument can be applied to the warhorse of Turing machine functionalism,

the Turing test itself. Suppose that human mental activities could be successfully programmed

so that the program would pass the Turing test with flying colors (i.e., the programmed computer

would be behaviorally indistinguishable from a person communicating over a teletype). Two

points should be made. First, if a computer does pass the Turing test, it does not demonstrate that

the human mental activities are solely syntactic or formal computational (for the reasons given

above). Second, a successful Turing test does not disprove the semantics differentiation

anymore than does the completeness theorem for first-order logic. It is not a behavioral

differentiation.

CHAP_7.docx5

Because the semantics differentiation is nonbehavioral, it places no behavioral or

functional restrictions on "what computers can do." AI critics who project behavioral limitations

on computers (e.g., "Computers might play good checkers, but could never play championship

chess") cannot base their assertions on the semantics differentiation. The differentiation is very

liberally disposed towards work in the artificial intelligence field since it places no theoretical

limit on the human behavior that can be programmed (and perhaps improved upon) with a digital

computer.

The Irrelevance of the Godel Incompleteness Theorem

Since the semantics differentiation was illustrated using a completeness theorem (for

first-order logic), it should be clear that the Godel Incompleteness Theorem (for systems with the

expressive power of arithmetic) is irrelevant to the argument. One does not need the Godel

Incompleteness Theorem to separate semantics from syntax. It neither adds to nor subtracts from

the semantics differentiation.

Applications of the Godel Theorem to the mind/machine differentiation are often plagued

by an order-of-the-quantifiers misunderstanding. The theorem does not show that there is a true

proposition that is formally undecidable in any given formal system of sufficient expressive

power. It shows that given any formal system of sufficient power, there is a proposition, true in

the intended interpretation, that is formally undecidable in that system (assuming consistency).

That proposition is decidable in stronger systems (add it as an axiom), but the stronger systems

will generate other undecidable propositions.

The undecidability demonstrated by the Godel Theorem is not absolute; it is relative to

the given formal system. If there were an "Absolute Godel Theorem" yielding an absolutely

undecidable proposition, then that would be relevant to the semantics differentiation. That

would show it to be a behavioral differentiation. But there is no such "Absolute Godel Theorem"

and the semantics differentiation by itself places no constraint on computer behavior.

CHAP_7.docx6

Why Johnniac Can't Add

It is virtually impossible to use computers or even talk about them without adopting an

intentionalist idiom. This manner of speaking (and mode of thought) imputes the intended

interpretation of the programmer to the computer running the program.

Consider a Turing machine that computes the successor function on the natural numbers

N. Given the natural number n as input, it computes n+1 as the output. A contiguous block of

n+1 1's on the Turing machine tape denotes the natural number n. The structure and the program

of the Turing machine are specified by its "quintuples" [e.g., Minsky 1967, 119], which specify

the behavior of the machine in terms of the symbol being read and the current internal state of

the machine. The machine is programmed so that when it starts reading the leftmost 1 in the

input block of 1's, it moves over to the right end of the block, prints an additional 1, and halts.

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

START OF COMPUTATION

END OF COMPUTATION

Figure 7.1. Action of Turing Machine to Compute Successor Function

Given a block of 1's representing n, the machine outputs a block of 1's representing n+1, i.e., it

computes the successor function.

Or does it? Let f:N → N be an effectively calculable isomorphism of the natural numbers

onto themselves (e.g., any finite permutation). Now interpret a block of n+1 ones as denoting

f(n) instead of n. Then given n, it is denoted by the block of f-1(n)+1 ones. The Turing machine

CHAP_7.docx7

adds a 1 to obtain a block of f-1(n)+2 ones that denotes the natural number g(n) = f(f-1(n) + 1).

The function g is not the successor function unless f is the identity function.

If the previous Turing machine computed the successor function, do we now have a

different Turing machine that computes g? No. The Turing machine is exactly the same. It is

specified by its "quintuples" and they are completely unchanged. The intended interpretation of

the blocks of ones on the tape was never a part of the specification or operation of the Turing

machine. It operates on the formal symbols on the tape in a manner independent of their

interpretation.

It is only the whole system consisting of the syntactical operations (the Turing machine)

plus the semantics (the interpretation of the symbols) that yields a computation of some function

on the natural numbers. The Turing machine by itself does not compute the successor function

or any of the infinity of other functions obtained by choosing different effectively calculable

coding functions f:N→N. It formally operates on the symbols in a specified way regardless of

the coding function used to interpret the symbols.

We thus have the absurd-sounding result that Johnniac cannot add! The apparent

absurdity of this conclusion only underscores the entrenchment of the intentionalist idiom in our

everyday thought and language. We unthinkingly impute to the computer itself the intended

interpretation of the program. But it is precisely in these discussions of the capacities of minds

and machines that the semantic interpretation must be bracketed aside from the syntactical

symbol manipulation device—no matter how much this cuts across everyday idioms.

The Intentionalist Fallacy

Animism, the imputation of aspects of human mentality to nonhuman entities, is an

ancient habit of thought. Primitive tribes took an "intentional stance" [Dennett 1978, 6] toward

natural events such as rainstorms. The thunder and lightning expressed the anger of the spirits.

John Ruskin called the artistic imputation of emotions to natural events the "pathetic fallacy"

CHAP_7.docx8

(e.g., "The waves pounded angrily on the rocks"). Neoclassical economists picture capital goods

and natural resources as "agents of production" that (who?) "cooperate" together with people to

produce the products. "Together, the man and shovel can dig my cellar" or "land and labor

together produce the corn harvest" [Samuelson 1976, 536-37]. A shovel is only a tool for the

hands while a computer is a tool for the mind. If orthodox economists are unable to resist

imputing responsible agency to shovels and land, it is not surprising to find a widespread

intentionalist manner of speaking about the most sophisticated machinery ever devised, the

modern digital computer.

But our task requires peeling away the popular idiom from the unadorned facts. In our

prior example, we saw that contrary to what "everyone knows," computers cannot add. Addition

is an operation defined on natural numbers. Computers operate on formal symbols. There is an

infinity of ways a programmer could interpret the symbols as referring to natural numbers, and

the Turing machine operates independently of all such semantic interpretations.

There was nothing particular about the example. The same sort of differentiation

between the syntactic computer operation and its intended semantic interpretation can be applied

to any and all computer programs. Computers do not compute the "computable functions."

Computers are programmed to formally manipulate symbols in an appropriate manner that can

be interpreted as computing the computable functions. Computers do not process semantic

information. Computers are programmed to manipulate symbols in a manner that can be

interpreted as the processing of information about some subject matter. "The stars run blindly"

and so do the so-called "goal-seeking mechanisms." Computers can be appropriately

programmed so that by running blindly, certain goals will in fact be pursued.

The imputation of the intended interpretation of the program to the programmed

computer could be called the "intentionalist fallacy." The intentionalist fallacy pervades the AI

literature. The intentionalist idiom is the lingua franca of AI. There is no need to change the

idiom. There is a need to understand it as only a manner of speaking or as an "intentional

CHAP_7.docx9

stance," not as a serious explanatory hypothesis (an hypothesis that, in any case, could be easily

refuted by reference to the nonsemantic character of computers). Computers are used by humans

to perform computations, to process information, and to seek goals. The syntax of the activity is

programmed into the computer so that it will be correct or appropriate in light of the semantics

supplied by the human user.

The Amphibious Nature of Programs

There are a number of arguments in the AI literature that attempt to show that computers

can have (inherent) intentionality. By far the most common argument derives from the

intentionalist fallacy.

In addition to the examples cited above, consider the idea of the "mind as program," i.e.,

mental processes as instantiations of programs. A program is always "amphibious" in that it has

two sides: the program as a formal symbol manipulation process and the intended semantic

interpretation of the program. A computer can carry out only the former, while a mind can carry

out the latter.

For a simple pre-computer example of this two-sidedness, consider the logical rule of

inference modus ponens. There is the rule itself as a semantic inference, and there is the

syntactic formalization of the rule. For the semantic rule, let P and Q be propositions and let ⇒

represent the truth-functional conditional. The semantic rule is:

If P is true and if P ⇒ Q is true, then infer that Q is true.

Equation 7.1. Semantic Modus Ponens

This is easily formalized as the syntactic rule:

Given the symbols "P" and "P ⇒ Q" as inputs, output the symbol "Q".

Equation 7.2. Syntactic Modus Ponens

The word "deduction," like the word "program," might be used ambiguously to mean

either the formal syntactic operation or the underlying semantic rule. The two rules are not

CHAP_7.docx10

identical. The syntactic rule formalizes and "simulates" the semantic rule but does not duplicate

it. It is the semantic rule that gives correctness to the syntactic rule under the usual interpretation

of the symbols.

The dual nature of programs is used in one of the exciting methodologies that has grown

out of AI, the use of programs as models in cognitive science. The semantic interpretation of the

program refers to the mental operations being modeled; the syntactic character of the program

allows the model to be run on a computer. These models no more show the mind to operate on

formal computational principles than hydraulic or electrical models for the macro-economy

(which some economists have constructed) show the economy to run on hydraulic or electrical

principles.

The amphibious nature of programs (syntax and semantics) is often abused in AI

arguments. When it is argued that programs have intentionality because, for example, they

survey alternatives and seek goals (as in a chess-playing program), that refers to the semantic

interpretation of the program. When it is said that a computer runs the program, that refers to the

program's syntactic side as a formal symbol manipulation routine (independent of its semantic

interpretation). Now consider the following argument.

Programs have intentionality (e.g., they survey possibilities or seek goals).

Computers run programs.

Therefore, computers have intentionality.

The argument is incorrect due to the shift in the meaning of "programs" in the first and second

sentences. The first occurrence of "programs" refers to the semantic interpretations while the

second refers to the syntactic rules. It is one form of the intentionalist fallacy to impute the

semantic interpretation of the program to the program qua symbol manipulation routine.

CHAP_7.docx11

The Formalization of Semantics

Another line of argument against the semantics differentiation is that semantics can be

programmed. This argument might be stated as follows.

Today, the semantics differentiation has some force because present-day attempts

to program semantic relations have been so limited and crude. But eventually

sophisticated methods will be developed so that the semantics of thought can be

programmed on a computer.

A similar argument holds that the syntax/semantics distinction is relative; the semantics of one

level can be formalized in the syntax of a higher level. These arguments fail to understand the

nature of the semantics differentiation. I share the optimism about programming or formalizing

many of the semantic aspects of thought. The point is that what one then has is a formalization

of the notion, a "syntacticalization" of the semantic notion, not the semantic notion itself.

An example can again be found in logic. There are two quite different syntactic systems

which might be associated with the semantics of first-order logic. We previously considered the

relationship between first-order semantics and a formal axiom system for first-order logic. In a

process that might be called "syntactic ascent," the semantic interpretation of first-order syntactic

formulas in first-order models can itself be modeled in a formal system of axiomatic set theory.

Proponents of "Strong AI" interpret the semantics differentiation as claiming that the

semantic relationship between a symbolic structure and its environment cannot itself be modeled.

They argue that a sophisticated computer system could internally represent an external state of

affairs. It could then appropriately relate this internal model with the internal symbol structure

so the symbols would then exhibit "aboutness." In this manner, strong AI proponents claim that

intentionality can be modeled on a computer.

I agree. The semantics differentiation would agree that intentionality can (in theory) be

modeled on a computer. Indeed, that modeling process is a computer version of syntactic ascent

CHAP_7.docx12

as when the semantics of first-order logic is formalized in axiomatic set theory. Suppose that the

sentence P(a) in some first-order language L is satisfied in the first-order model B.

Model B

Predicate
P

Individual a

"P(a)"
is satisfied by

(Sentence in
1st order

language L)

Figure 7.2. Sentence P(a) is Satisfied in Model B

The notion of being a sentence in first-order language L could be represented in a system

of axiomatic set theory by, say, a formula WFF("P(a)"). The notion of being a (set theoretic)

model for the first-order language could be represented by a formula M(B). Then semantic

notion that a sentence P(a) is satisfied by a model B could be represented by some formula

S("P(a)",B).

Model B

Predicate
P

Individual a

"P(a)"
is satisfied by

S("P(a)",B)

is
satisfied

 by

(Sentence in
set theory)

(Sentence in
first-order

language L)

Figure 7.3. Modeling of Semantic Relationship in Set Theory

CHAP_7.docx13

Relationships between the syntax of a first-order language and its semantic models could

then be formally derived within a system of axiomatic set theory. In this manner, the semantics

of first-order languages can be modeled in the syntax of axiomatic set theory.

This example of syntactic ascent is rigid and static in comparison with the potential

flexible and adaptable computer modeling of the semantic relationship between a perceiving,

acting agent and the environment. But both are examples of modeling semantics within syntax,

and thus the clear-cut logical example suffices to illustrate the point.

What has been gained by the modeling? Certainly no one would claim that it proves that

the semantic relationship between a sentence P(a) and a model B is a syntactic notion, only that it

can be modeled in the syntax of another formal theory. This is reminiscent of Searle's distinction

between duplication and simulation. First-order model-theoretic semantics can be simulated in

the syntax of axiomatic set theory, but not duplicated.

The modeling produces a formalization of the semantic relationship, not the semantic

relationship being modeled. The distinction between the syntactic machinery (formal set theory

in this case) and the intended interpretation (e.g., the semantics of first-order theories) remains

the same. The claims of strong AI would require the reproduction (duplication) of the semantic

relationship, not its formalization (simulation) in some syntactic system such as a digital

computer.

Computer programs can be written about anything: playing chess, balancing Aunt

Rachel's checkbook, or modeling the semantics of linguistic representations. A program as a

syntactic operation is no less formal and no less independent of its content when the intended

interpretation happens to be the semantics of certain symbols and representations rather than

playing chess or computing the successor function.

CHAP_7.docx14

Syntax + Robotics = Semantics?

There is another AI argument that might be called the "syntax + robotics = semantics"

thesis. Jerry Fodor [1980] gave this "Robot Reply" in his response to Searle's argument. Can

intentionality be physically realized by adding physical transducers to symbol crunchers? The

argument is that by adding to a digital computer the robotic capabilities to sense and manipulate

the environment, the computer can understand the referents of its symbols and thus add a

semantic dimension to its syntactic operations. This "Robot Reply" argument is essentially a

hardware-oriented variation on the formalization-of-semantics argument considered above.

Robotic abilities certainly do add extra dimensions of power and versatility to a

computer. But they do not add a semantic dimension. The computer continues to operate on

formal syntactic principles as before, but the range of functions encoded in the syntax can be

greatly extended.

For instance, robotic abilities might allow the replacement of certain human inputs of

semantic information with purely syntactic links. Suppose a human operator makes certain

measurements and then appropriately programs a numerically controlled (NC) machine. An NC

machine with robotic sensors could be programmed and calibrated to take the measurements and

automatically adjust its control program in an appropriate manner. The analog-to-digital

interface between the robotic sensors and the computer could be designed so the relevant

physical characteristics of the environment are transformed into the appropriate formal properties

of the symbolic structures being manipulated by the computer. The role of the system designer

and programmer is pushed back to that of structuring the whole computer-cum-robot system so

that by running blindly (i.e., blind to its intended function), it in fact runs in accordance with its

intended function.

In simpler terms, a physical connection between a symbol and the environment does not

give the symbol an intrinsic aboutness. It does not supply the missing ingredient to transform

syntax into semantics. Transducers transmit causes, not meanings. The root of the "syntax +

CHAP_7.docx15

robotics = semantics" thesis is a confusion between the cause of an event and the meaning of the

event under a certain scheme of interpretation.

Fred Dretske's gas gauge example illustrates this ambiguity:

Our humble gauge even exhibits the rudiments of intensionality (sic)—

representing the amount of gas in my tank. [1983, 82]

Consider the event of the gauge showing "Empty." The meaning of this event under the usual

interpretation is, of course, that the tank is empty. The cause of the event is quite distinct. The

whole distinction between the mechanism functioning correctly or being "broken" hinges on the

correspondence or lack of it between the intended meaning and the cause of the gauge showing

"Empty." The physical transducer between the gas tank and gauge does not supply intentionality

or meaning to the Empty-event; it only supplies a cause that may or may not correspond with the

intended meaning.

If the cause and the meaning of an event were identical, then gas gauges could not

malfunction. And the same holds for robots. The robot reply involves the same confusion

between cause and meaning as the ascription of intentionality to the gas gauge. The physical

transducers of a robotic system will supply a whole new range of causes to affect the symbol-

crunching events in the computer. But, as in the case of the humble gas gauge, the causal

connection is quite distinct from the intended interpretation or meaning of the symbolic events

[for a more information-theoretic treatment of the robot reply, see Ellerman 1986].

Massive Parallelism and All That

Yet another argument holds that advances in hardware and software, such as massive

parallelism, will eventually lead to digital computers that have intentionality. Minsky uses this

argument in addressing Searle's presentation of the intentionality differentiation.

I just can't see why Searle is so opposed to the idea that a really big pile of junk

might have feelings like ours. He proposes no evidence whatever against it, he

CHAP_7.docx16

merely tries to portray it as absurd to imagine machines, with minds like ours—

intentions and all—made from stones and paper instead of electrons and atoms.

[Minsky 1980, p. 440].

Regardless of one's intuitions about intentionality, it is easy to answer this argument using the

semantics approach to the mind/machine differentiation. A Turing machine does not cease being

a formal symbol manipulation device as one keeps adding quintuples until it becomes "really

big." Adding more and more axioms to a formal syntactic system does not suddenly yield a

semantic system. Since a semantic system operates on different principles (i.e., using the

meaning of the symbols), it cannot be obtained as a "really big" syntactic system. This is not a

question of "evidence"; it follows from the definition of Turing machines or other symbol

manipulation systems. Thus the size and sophistication of the computers and programs are quite

irrelevant to the semantics differentiation.

Conclusion

Minds crunch symbols according to their intended interpretation. Digital computers

crunch symbols solely on the basis of their form. Minds program computers to formally crunch

symbols in a manner that is appropriate in view of the intended interpretation of the symbols.

Computers can only carry out formal syntactic processes. The human mind can carry out

semantic processes. Thus minds and machines may be differentiated on the basis of two

fundamentally different ways of operating on symbols:

1. semantically according to their meaning, and

2. syntactically in a manner independent of their meaning.

In the author's opinion, many AI researchers are "only" trying to obtain what we have

agreed is possible, the functional modeling or simulation of human intentionality on a digital

computer. That is the success they seek, and they are quite impatient with "philosophical"

arguments over whether that is simulation or duplication. While the simulation/duplication

CHAP_7.docx17

distinction does have philosophical import, it is not "philosophical" in the pejorative sense of

being vague since it can be illustrated by examples from logic such as the relationship between

first-order semantics and axiomatic set theory. An AI researcher might grant the "theoretical"

distinction but consider it "unimportant" because it is nonbehavioral. Indeed, computers are so

useful in human society precisely because for behavioral purposes, the semantics differentiation

between minds and machines is not relevant.

References

Dennett, Daniel. 1978. Brainstorms. Cambridge, Mass.: MIT Press.

Dretske, F. 1983. Precis of "Knowledge and the Flow of Information." Behavioral and Brain

Sciences 6:55-90.

Dreyfus, Hubert, ed.. 1982. Husserl, Intentionality, and Cognitive Science. Cambridge, Mass.:

MIT Press.

Edwards, Paul, ed.. 1967. The Encyclopedia of Philosophy. New York: Macmillan/Free Press.

Ellerman, David. 1986. "Intentionality and Information Theory." The Behavioral and Brain

Sciences. 9:1 (March): 143-44.

Fodor, Jerry A. 1980. "Searle On What Only Brains Can Do." The Behavioral and Brain

Sciences 3: 431-32.

Haugeland, John, ed.. 1981. Mind Design. Cambridge, Mass.: MIT Press.

McAlister, Linda, ed.. 1976. The Philosophy of Brentano. Atlantic Highlands,N.J.: Humanities

Press.

Minsky, Martin. 1967. Computation: Finite and Infinite Machines. Englewood Cliffs, N.J.:

Prentice-Hall.

Minsky, Martin. 1980. "Decentralized Minds." The Behavioral and Brain Sciences 3: 439-40.

CHAP_7.docx18

Samuelson, Paul. 1976. Economics. Tenth edition. New York: McGraw-Hill.

Searle, John R. 1980. "Minds, Brains and Programs" and "Intrinsic Intentionality." Behavioral

and Brain Sciences 3: 417-24 and 450-56.

Searle, John R. 1981. "Analytic philosophy and mental phenomena." Midwest Studies in

Philosophy 6: 405-23.

Searle, John R. 1982. "The myth of the computer." New York Review of Books 29, no. 7: 3-6.

Searle, John R. 1983. Intentionality. New York: Cambridge University Press.

Searle, John R. 1984. Minds, Brains and Science. London: British Broadcasting Corporation.

	Introduction
	The Semantics Differentiation
	The Semantics Differentiation is Nonfunctionalist
	The Irrelevance of the Godel Incompleteness Theorem
	Why Johnniac Can't Add
	Figure 7.1. Action of Turing Machine to Compute Successor Function

	The Intentionalist Fallacy
	The Amphibious Nature of Programs
	The Formalization of Semantics
	Syntax + Robotics = Semantics?
	Massive Parallelism and All That
	Conclusion
	References

