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Abstract: Category theory has foundational importance because it provides conceptual
lenses to characterize what is important and universal in mathematics—with adjunction
seeming to be the primary lens. Our topic is a theory showing “where adjoints come
from”. The theory is based on object-to-object “chimera morphisms”, “heteromorphisms”,
or “hets” between the objects of different categories (e.g., the insertion of generators as a
set-to-group map). After showing that heteromorphisms can be treated rigorously using
the machinery of category theory (bifunctors), we show that all adjunctions between two
categories arise (up to an isomorphism) as the representations (i.e., universal models)
within each category of the heteromorphisms between the two categories. The conventional
treatment of adjunctions eschews the whole concept of a heteromorphism, so our purpose
is to shine a new light on this notion by showing its origin as a het between categories being
universally represented within each of the two categories. This heteromorphic treatment of
adjunctions shows how they can be split into two separable universal constructions. Such
universals can also occur without being part of an adjunction. We conclude with the idea
that it is the universal constructions (adjunctions being an important special case) that are
really the foundational concepts to pick out what is important in mathematics and perhaps
in other sciences, not to mention in philosophy.
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1. Introduction: The Foundational Importance of Adjoints
Category theory is of foundational importance in mathematics but it is not “foun-

dational” in the sense normally claimed by set theory. It does not provide some basic
objects (e.g., sets) from which other mathematical objects can be constructed. Instead, the
foundational role of category theory lies in providing conceptual lenses to characterize
what is universal and natural in mathematics. For summary statements, see [1–3]. Two of
the most important concepts are universal mapping properties and natural transformations.
These two concepts are combined in the notion of adjoint functors. In recent decades,
adjoint functors have emerged as the principal lens through which category theory plays
out its foundational role of characterizing what is important in mathematics.

The developers of category theory, Saunders Mac Lane and Samuel Eilenberg, fa-
mously said that categories were defined in order to define functors, and functors were
defined in order to define natural transformations. Their original paper [4] was entitled not
“General Theory of Categories” but General Theory of Natural Equivalences. Adjoints were
defined more than a decade later by Daniel Kan [5], but the realization of their foundational
importance has steadily increased over time [6,7]. Now, it would perhaps not be too much
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of an exaggeration to see categories, functors, and natural transformations as the prelude
to defining adjoint functors. As Steven Awodey stated in his text:

The notion of adjoint functor applies everything that we have learned up to now
to unify and subsume all the different universal mapping properties that we have
encountered, from free groups to limits to exponentials. But more importantly, it
also captures an important mathematical phenomenon that is invisible without
the lens of category theory. Indeed, I will make the admittedly provocative claim
that adjointness is a concept of fundamental logical and mathematical importance
that is not captured elsewhere in mathematics. [8] (p. 207)

Other category theorists have given similar testimonials:

To some, including this writer, adjunction is the most important concept in
category theory. [9] (p. 6)

The isolation and explication of the notion of adjointness is perhaps the most
profound contribution that category theory has made to the history of general
mathematical ideas. [10] (p. 438)

Nowadays, every user of category theory agrees that [adjunction] is the concept
which justifies the fundamental position of the subject in mathematics. [11] (p. 367)

Given the importance of adjoint functors in category theory and in mathematics as a whole,
it would seem worthwhile to further investigate the concept of an adjunction. Whence
adjoints? Where do adjoints come from? How do they arise? In this paper, we will present
a theory of adjoint functors to address these questions.

Category theory groups together mathematical objects in categories with some common
structure (e.g., sets, partially ordered sets, groups, rings, and so forth) and the appropriate
morphisms between such objects. Since the morphisms are between objects of similar
structure, they are ordinarily called “homomorphisms” or just “morphisms” or “homs”
for short.

But there have always been other morphisms that occur in mathematical practice that are
between objects with different structures (i.e., in different categories) such as an insertion-of-
generator map from a set to the free group on that set. Indeed, the working mathematician
might well characterize the free group F(X) on a set X as the group such that for any set-to-
group map f : x ⇒ g, there is a unique group homomorphism f ∗ : F(x) → g that factors f
through the canonical insertion of generators hx : x ⇒ F(x), i.e., f = f ∗hx ([12] (p. 69); [13]
(p. 89); [14] (p. 65)). In order to contrast morphisms such as f : x ⇒ g and hx : x ⇒ F(x)
with the homomorphisms between objects within a category such as f ∗ : F(x) → g, the
double arrows might be called heteromorphisms (hets, for short) or, more colorfully, chimera
morphisms (since they have a tail in one category and a head in another category). The
usual machinery of category theory (bifunctors, in particular) can be adapted to give a
rigorous treatment of heteromorphisms (and their compositions with homomorphisms)
that is parallel to the usual bifunctorial treatment of homomorphisms.

With a precise notion of heteromorphisms in hand, it can then be seen that adjoint
functors arise as the functors giving the representations, using homomorphisms within
each category, of the heteromorphisms between two categories. That is, the basic connection,
a het between two categories, is represented by a hom inside each of the two categories.

Often, one of the representations is the important one in the adjunction (with the
other being a matter of conceptual bookkeeping). In the case of the free-group adjunc-
tion, the important representation is the representation of heteromorphisms Het(x, g) by
the group of homomorphisms Hom(F(x), g), which is given by the natural isomorphism
Het(x, g) ∼= Hom(F(x), g), which naturally pairs a het f : x⇒ g with the hom f ∗ : F(x)→ g.
And, conversely, given a pair of adjoint functors, heteromorphisms can then be defined



Foundations 2025, 5, 10 3 of 22

between (isomorphic copies of) the two categories so that the adjoints arise out of the
representations of those heteromorphisms. Hence, this heteromorphic theory shows where
adjoints “come from” or “how they arise”. It would seem that this theory of adjoint functors
was not developed in the early treatment of category theory since heteromorphisms, al-
though present in mathematical practice, were not part of the initial machinery of category
theory. The earliest heteromorphic treatment of adjunction (to the author’s knowledge)
was by Bodo Pareigis [15], and an extensive heteromorphic treatment of category theory
was developed by Takahiro Kato [16] (using different terminology).

2. Methods: Theory of Adjoints
The cross-category object-to-object morphisms c : x ⇒ a, called heteromorphisms (hets

for short) or chimera morphisms, will be indicated by double arrows (⇒) rather than single
arrows (→). The first question is how do heteromorphisms compose with one another?
But this is not necessary. Chimeras do not need to “mate” with other chimeras to form a
“species” or category; they only need to mate with the intra-category morphisms on each
side to form other chimeras. The appropriate mathematical machinery to describe this is
the generalization of a group acting on a set to a generalized monoid or category acting
on a set (where each element of the set has a “domain” and a “codomain” to determine
when composition is defined). In this case, there are two categories acting on a set, one
on the left and one on the right. Given a chimera morphism c : x ⇒ a from an object in
a category X to an object in a category A and morphisms h : x′ → x in X and k : a → a′

in A, the composition ch : x′ → x ⇒ a is another chimera x′ ⇒ a, and the composition
kc : x ⇒ a → a′ is another chimera x ⇒ a′ with the usual identity, composition, and
associativity properties as illustrated in Figure 1.

Figure 1. Composition of a het with homs on each side.

Such an action of two categories acting on a set on the left and on the right is exactly
described by a bifunctor Het : Xop × A → Set, where Het(x, a) = {x ⇒ a}, and where
Set is the category of sets and set functions. Thus, the natural machinery to treat object-
to-object chimera morphisms between categories are het-bifunctors Het : Xop ×A → Set
that generalize the hom-bifunctors Hom : Xop × X → Set used to treat object-to-object
morphisms within a category.

How might the categorical properties of the heteromorphisms be expressed using
homomorphisms? Represent the het-bifunctors using hom-functors on the left and on the
right (see any category theory text such as [17] for Alexander Grothendieck’s notion of a rep-
resentable functor). Any bifunctor Het : Xop×A→ Set is represented on the left if for each x in
X there is a “universal” [3] object F(x) in A and an isomorphism HomA(F(x), a) ∼= Het(x, a)
natural in a. This terminology “represented on the left” or “on the right” is used to agree
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with the terminology for left and right adjoints. In more detail, for each x in X, there is an
object F(x) in A and a canonical het hx : x ⇒ F(x) such that for any het f : x ⇒ a, there
is a unique f∗ : F(x) → a such that the triangle commutes, i.e., f∗hx = f . Intuitively, the
het f between X and A is represented by f∗ inside of A. It is a standard result that the
assignment x 7→ F(x) extends to a functor F and that the isomorphism is also natural in x
as illustrated in Figure 2.

Figure 2. Het bifunctor represented on the left.

Similarly, Het is represented on the right if for each a there is another universal object
G(a) in X and an isomorphism Het(x, a) ∼= HomX(x, G(a)) natural in x. In more detail,
for each a in A, there is an object G(a) in X and a canonical het ea : G(a) ⇒ a such that
for any het f : x ⇒ a, there is a unique f ∗ : x → G(a) such that the triangle commutes,
i.e., ea f ∗ = f . Intuitively, the het f is represented by the hom f ∗ in the category X. And
similarly, the assignment a 7→ G(a) extends to a functor G and that the isomorphism is also
natural in a as shown in Figure 3.

Figure 3. Het-bifunctor represented on the right.

If a het-bifunctor Het : Xop ×A → Set is represented on both the left and the right,
then we have two functors F : X→ A, and G : A→ X and the isomorphisms are natural in
x and in a:

HomA(Fx, a) ∼= Het(x, a) ∼= HomX(x, Ga)

where f∗ ←→ f ←→ f ∗. It only remains to drop out the middle term Het(x, a) to arrive
at the “official” or usual definition of a pair of adjoint functors, which does not mention
heteromorphisms [8,17].

HomA(Fx, a) ∼= HomX(x, Ga).
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At first glance, this ordinary presentation of an adjunction does not seem to have any
directionality between the categories; it looks symmetrical. In the rather meager attempts
at interpreting adjunctions, e.g., in illustrating a “unity of opposites” [6,7], there is still no
hint of directionality. But adjoints do have a direction that comes out when adjunctions are
to be composed [17] (p. 104). In the heteromorphic treatment, the directionality is obvious;
it is the direction of the hets.

While a birepresentation of a het-bifunctor gives rise to an adjunction, do all adjunc-
tions arise in this manner? To round out the theory, we give an “adjunction representation
theorem” that shows how, given any adjunction F : X ⇄ A : G, heteromorphisms can be
defined between (isomorphic copies of) the categories X and A so that (isomorphic copies
of) the adjoints arise from the representations on the left and right of the het-bifunctor.

By analogy, suppose we are given any set function f : X → A from the set X to a set
A. The graph( f ) = {(x, f (x)) : x ∈ X} ⊆ X × A of the function is set-isomorphic to the
domain of the function X. The embedding x 7−→ (x, f (x)) maps X to the set-isomorphic
copy of X, namely graph( f ) ⊆ X × A. That isomorphism generalizes to categories and
to functors between categories. Given any functor F : X → A, the domain category X
is embedded in the product category X× A by the assignment x 7→ (x, Fx) (where we
shorten F(x) to Fx and similarly for G) to obtain the isomorphic copy X̂ (which can be
considered the graph of the functor F). Given any other functor G : A → X, the domain
category A is embedded in the product category by a 7→ (Ga, a) to yield the isomorphic
copy Â (the graph of the functor G). If the two functors are adjoints, then the properties
of the adjunction can be nicely expressed by the commutativity within the one category
X×A of “hom-pair adjunctive squares”, where morphisms are pairs of homomorphisms
(in contrast to a “het adjunctive square” defined later).

(x, Fx)
( f ∗ ,F f ∗)−→ (Ga, FGa)

(ηx, 1Fx) ↓ ↘( f ∗ , f∗) ↓ (1Ga, εa)

(GFx, Fx)
(G f∗ , f∗)−→ (Ga, a)

Hom-pair adjunctive square

The main diagonal ( f ∗, f∗) in a commutative hom-pair adjunctive square pairs to-
gether maps that are images of one another in the adjunction isomorphism HomA(Fx, a) ∼=
HomX(x, Ga). If f ∗ ∈ HomX(x, Ga), f∗ ∈ HomA(Fx, a) is the corresponding homomor-
phism on the other side of the isomorphism between hom-sets called its adjoint transpose
(or later “adjoint correlate”). Since the maps on top are always in X̂ and the maps on the
bottom are in Â, the main diagonal pairs of maps (including the vertical maps)—which are
ordinary morphisms in the product category—have all the categorical properties of hetero-
morphisms from objects in X ∼= X̂ to objects in A ∼= Â. Hence, the heteromorphisms are

abstractly defined as the pairs of adjoint transposes, Het(x, a) = {(x, Fx)
( f ∗ , f∗)−→ (Ga, a)}, and

the adjunction representation theorem is that (isomorphic copies of) the original adjoints F
and G arise from the representations on the left and right of this het-bifunctor.

Heteromorphisms are formally treated using bifunctors of the form Het : Xop ×A→ Set.
Such bifunctors and generalizations replacing Set with other categories have been studied
by the Australian school under the name of profunctors [18], by the French school under
the name of distributors [19], and by F. William Lawvere under the name of bimodules [20].
However, the guiding interpretation has been interestingly different. “Roughly speaking, a
distributor is to a functor what a relation is to a mapping” [21] (p. 308) (hence the name
“profunctor” in the Australian school). For instance, if Set was replaced with 2, then the
bifunctor would just be the characteristic function of a relation from X to A. Hence, in

the general context of enriched category theory, a “bimodule” Yop ⊗ X
φ

−→ V would be
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interpreted as a “V-valued relation”, and an element of φ(y, x) would be interpreted as the
“truth-value of the φ-relatedness of y to x” [20] (p. 158 or p. 28 of reprint).

The subsequent development of profunctors–distributors–bimodules has been along
the lines suggested by that guiding interpretation. For instance, composition is defined
between distributors as “relational” generalizations of functors to define a category of
distributors in analogy with composition defined between relations as generalizations of
functions, which allows the definition of a category of relations [21] (Chapter 7).

The heteromorphic interpretation of the bifunctors Xop ×A→ Set is rather different.
Each such bifunctor is taken as defining how the chimeras in Het(x, a) compose with
morphisms in A on one side and with morphisms in X on the other side to form other
chimeras. This provides the formal treatment of the heteromorphisms that have always
existed in mathematical practice. The principal novelty here is the use of the chimera
morphism interpretation of these bifunctors to carry out a whole program of interpretation
for adjunctions, i.e., a theory of adjoint functors. In concrete examples, heteromorphisms
have to be “found” as is realized in the broad classes of examples treated here. However,
in general, the adjunction representation theorem shows how abstract heteromorphisms
(pairs of adjoint transposes in the product category X×A) can always be found so that any
adjunction arises (up to an isomorphism) out of the representations on the left and right of
the het-bifunctor of such heteromorphisms.

3. The Heteromorphic Theory of Adjoints
3.1. Het-Bifunctors

Heteromorphisms (in contrast to homomorphisms) are like mongrels or chimeras
that do not fit into either of the two categories. Since inter-category heteromorphisms are
not morphisms in either of the categories, what can we say about them? The one thing
we can reasonably say is that heteromorphisms can be precomposed or postcomposed
with morphisms within the categories (i.e., intra-category morphisms) to obtain other
heteromorphisms. (The chimera genes are dominant in these mongrel matings. While
mules cannot mate with mules, it is “as if” mules could mate with either horses or donkeys
to produce other mules.) This is easily formalized using bifunctors similar to the hom-
bifunctors Hom(x, y) in homomorphisms within a category. Using the sets-to-groups
example to guide intuition, one might think of Het(x, a) = {x c⇒ a} as the set of set
functions from a set x to a group a. For any A-morphism k : a → a′ and any chimera

morphism x c⇒ a, intuitively, there is a composite chimera morphism x c⇒ a k→ a′ = x kc⇒ a′,
i.e., k induces a map Het(x, k) : Het(x, a) → Het(x, a′). For any X-morphism h : x′ → x
and chimera morphism x c⇒ a, intuitively there is the composite chimera morphism

x′ h→ x c⇒ a = x′ ch⇒ a, i.e., h induces a map Het(h, a) : Het(x, a) → Het(x′, a) (note the
reversal of direction). The induced maps would respect identity and composite morphisms
in each category. Moreover, composition is associative in the sense that (kc)h = k(ch). This
means that the assignments of sets of chimera morphisms Het(x, a) = {x c⇒ a} and the
induced maps between them constitute a bifunctor Het : Xop ×A→ Set (contravariant in
the first variable and covariant in the second). With this motivation, we may turn around
and define heteromorphisms from X-objects to A-objects as the elements in the values of a
bifunctor Het : Xop ×A→ Set. This would be analogous to defining the homomorphisms
in X as the elements in the values of a given hom-bifunctor HomX : Xop × X → Set and
similarly for HomA : Aop ×A→ Set.

With heteromorphisms described using het-bifunctors, we can use Grothendieck’s
notion of a representable functor to show that an adjunction arises from a het-bifunctor
Het : Xop ×A→ Set that is “birepresentable” in the sense of being representable on both
the left and right.
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Given any bifunctor Het : Xop × A → Set, it is representable on the left if for each
X-object x, there is an A-object Fx that represents the functor Het(x,−), i.e., there is an
isomorphism ψx,a : HomA(Fx, a) ∼= Het(x, a) natural in a. For each x, let hx be the image
of the identity on Fx, i.e., ψx,Fx(1Fx) = hx ∈ Het(x, Fx). We first show that hx is a universal
element for the functor Het(x,−) and then use that to complete the construction of F as a
functor. For any f ∈ Het(x, a), let f∗ = ψ−1

x,a ( f ) : Fx → a. Then, naturality in a means that
the following diagram commutes.

HomA(Fx, Fx) ∼= Het(x, Fx)

Hom(Fx, f∗) ↓ ↓ Het(x, f∗)

HomA(Fx, a) ∼= Het(x, a)

Het(x, a) representable on the left

Chasing 1Fx around the diagram yields that f = Het(x, fx)(hx), which can be written
as f = f∗hx. Since the horizontal maps are isomorphisms, f∗ is the unique map f∗ : Fx → a
such that f = f∗hx. Then, (Fx, hx) is a universal element (in Mac Lane’s sense [17] (p. 57))

for the functor Het(x,−) or equivalently 1 hx−→ Het(x, Fx) is a universal arrow [17] (p. 58)
from 1 (the one point set) to Het(x,−). Then, for any X-morphism j : x → x′, Fj : Fx → Fx′

is the unique A-morphism such that Het(x, Fj) fills in the right vertical arrow in the
following diagram.

1 hx−→ Het(x, Fx)

hx′
↓ ↓ Het(x,Fj)

Het(x′, Fx′)
Het(j,Fx′)−→ Het(x, Fx′)

It is easily checked that such a definition of Fj : Fx → Fx′ preserves identities and
composition using the functoriality of Het(x,−) so we have a functor F : X → A. It is a
further standard result that the isomorphism is also natural in x (e.g., [17] (p. 81) or the
“parameter theorem” [22] (p. 525)).

Given a bifunctor Het : Xop × A → Set, it is representable on the right if for each
A-object a, there is an X-object Ga that represents the functor Het(−, a), i.e., there is an
isomorphism φx,a : Het(x, a) ∼= HomX(x, Ga) natural in x. For each a, let ea be the inverse
image of the identity on Ga, i.e., φ−1

Ga,a(1Ga) = ea ∈ Het(Ga, a). For any f ∈ Het(x, a), let
f ∗ = φx,a( f ) : x → Ga. Then, naturality in x means that the following diagram commutes.

Het(Ga, a) ∼= HomX(Ga, Ga)

Het( f ∗ ,a) ↓ ↓ Hom( f ∗ ,Ga)

Het(x, a) ∼= HomX(x, Ga)

Het(x, a) representable on the right

Chasing 1Ga around the diagram yields that c = Het( f ∗, a)(ea) = ea f ∗, so (Ga, ea) is a
universal element for the functor Het(−, a) and that 1 ea−→ Het(Ga, a) is a universal arrow
from 1 to Het(−, a). Then, for any A-morphism k : a′ → a, Gk : Ga′ → Ga is the unique
X-morphism such that Het(Gk, a) fills in the right vertical arrow in the following diagram.

1 ea−→ Het(Ga, a)
ea′ ↓ ↓ Het(Gk,a)

Het(Ga′, a′)
Het(Ga′ ,k)−→ Het(Ga′, a)

In a similar manner, it is easily checked that the functoriality of G follows from the
functoriality of Het(−, a). Thus, we have a functor G : A → X such that Ga represents
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the functor Het(−, a), i.e., there is a natural isomorphism φx,a : Het(x, a) ∼= HomX(x, Ga)
natural in x. And in a similar manner, it can be shown that the isomorphism is natural in
both variables.

Thus, given a bifunctor Het : Xop ×A→ Set representable on both sides, we have the
following adjunction natural isomorphisms:

HomA(Fx, a) ∼= Het(x, a) ∼= HomX(x, Ga).

Starting with f ∈ Het(x, a), the corresponding f ∗ ∈ HomX(x, Ga) and f∗ ∈ HomA(Fx, a)
are called adjoint correlates or transposes of one another. Starting with 1Fx ∈ HomA(Fx, Fx),
its adjoint correlates are the het unit hx ∈ Het(x, Fx) and the ordinary unit
ηx ∈ HomX(x, GFx), where this usual unit ηx might also be called the “hom unit” to
distinguish it from its het correlate. Starting with 1Ga ∈ HomX(Ga, Ga), its adjoint cor-
relates are the het counit ea ∈ Het(Ga, a) and the usual (hom) counit εa ∈ HomA(FGa, a).
Starting with any f ∈ Het(x, a), the two factorizations f∗hx = f = ea f ∗ combine to give
what we will later call the “het adjunctive square” with f as the main diagonal [as op-
posed to the hom-pair adjunctive square previously constructed, which had ( f ∗, f∗) as the
main diagonal].

The conventional (heterophobic) presentation of an adjunction as a natural isomor-
phism between two hom-sets makes it seem like an atom that cannot be split. But the
heteromorphic treatment involves two natural isomorphisms so it shows that an adjunction
splits into two separate elementary parts that just represent universal mapping properties
and thus could be called “half-adjunctions” (or “semi-adjunction”), or even better just
“universal constructions” [16].

When the het-bifunctor is representable on the left, HomA(Fx, a) ∼= Het(x, a), that
is, left universal or left half-adjunction. Or if the het-bifunctor is representable on the right,
Het(x, a) ∼= HomX(x, Ga), that is, a right universal or right half-adjunction. Then, a left half-
adjunction plus a right half-adjunction equals an adjunction. For many adjunctions, only
one of the half-adjunctions is the important one. The other half-adjunction is trivial and is
only needed to state the universal mapping property without using heteromorphisms. This
raises the question, to be discussed later, whether or not the concept of category theory that
is of foundational importance is the universal construction, where adjunctions occur as
the particularly nice special cases of birepresentations where left and right universals (or
half-adjunctions) combine to make an adjunction.

3.2. Adjunction Representation Theorem

Adjunctions may be and usually are presented without any thought to any underlying
heteromorphisms. However, given any adjunction, there is always an “abstract” associated
het-bifunctor given by the main diagonal maps in the commutative hom-pair adjunctive squares:

Het(x̂, â) = {x̂ = (x, Fx)
( f ∗ , f∗)−→ (Ga, a) = â}

Het-bifunctor for any adjunction from hom-pair adjunctive squares.

The diagonal maps are closed under precomposition with maps from X̂ and postcom-
position with maps from Â. Associativity follows from the associativity in the ambient
category X×A.

The representation is accomplished essentially by putting a ĥat on objects and mor-
phisms embedded in X × A. The categories X and A are represented, respectively, by
the subcategory X̂ with objects x̂ = (x, Fx) and morphisms f̂ = ( f ∗, F f ∗) and by the
subcategory Â with objects â = (Ga, a) and morphisms ĝ = (G f∗, f∗). The twist functor
(F, G) : X×A→ X×A defined by (F, G)(x, a) = (Ga, Fx) (and similarly for morphisms)
restricted to X̂ ∼= X is F̂ has the action of F, i.e., F̂x̂ = (F, G)(x, Fx) = (GFx, Fx) = F̂x ∈ Â
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and similarly for morphisms. The twist functor restricted to Â ∼= A yields Ĝ, which has the
action of G, i.e., Ĝâ = (F, G)(Ga, a) = (Ga, FGa) = Ĝa ∈ X̂ and similarly for morphisms.
These functors provide representations on the left and right of the abstract het-bifunctor

Het(x̂, â) = {x̂ ( f ∗ , f∗)−→ â}, i.e., the natural isomorphism

HomÂ(F̂x̂, â) ∼= Het(x̂, â) ∼= HomX̂(x̂, Ĝâ).

This birepresentation of the abstract het-bifunctor gives an isomorphic copy of the
original adjunction between the isomorphic copies X̂ and Â of the original categories. This
hom-pair representation is summarized in the following:

Adjunction Representation Theorem: Every adjunction F : X ⇄ A : G can be repre-
sented (up to isomorphism) as arising from the left and right representing universals
of a het-bifunctor Het : X̂op × Â→ Set, giving the heteromorphisms from the objects
in a category X̂ ∼= X to the objects in a category Â ∼= A.

As a historical note [17] (p. 103), Mac Lane noted that Bourbaki “missed” the notion
of an adjunction because Bourbaki focused on the left representations of bifunctors
W : Xop × A → Sets. Mac Lane remarks that given G : A → X, they should have
taken W(x, a) = HomX(x, Ga) and then focused on “the symmetry of the adjunction prob-
lem” to find Fx so that HomA(Fx, a) ∼= HomX(x, Ga). But Mac Lane thus missed the
completely symmetrical adjunction problem, which is the following: given W(x, a), find
both Ga and Fx such that HomA(Fx, a) ∼= W(x, a) ∼= HomX(x, Ga). For more on the history
of adjunctions and heteromorphisms, see [23].

3.3. Het Adjunctive Squares

We previously used the representations of Het(x, a) to pick out universal elements,
the het unit hx ∈ Het(x, Fx), and the het counit ea ∈ Het(Ga, a), as the respective adjoint
correlates of 1Fx and 1Ga under the isomorphisms. We showed that from the birepresenta-

tion of Het(x, a), any chimera morphism x
f⇒ a in Het(x, a) would have two factorizations:

f∗hx = f = ea f ∗. These two factorizations are spliced together along the main diagonal
f : x ⇒ a to form the het (commutative) adjunctive square.

x
f ∗−→ Ga

hx ⇓ u f ⇓ ea

Fx
f∗−→ a

Het Adjunctive Square

The het adjunctive square is the diagrammatic representation of the full adjunction
representation (i.e., with the Het(x, a) in the middle):

HomA(Fx, a) ∼= Het(x, a) ∼= HomX(x, Ga).

Sometimes, the two adjoint transposes are written vertically as in a Gentzen-style rule
of inference:

x → Ga
Fx → a

Gentzen-style presentation of an adjunction

This can be seen as a proto-het adjunctive square without the vertical hets—at least
when the homomorphism involving the left adjoint is on the bottom.

Some of the rigmarole of the conventional treatment of adjoints (sans chimeras) is only
necessary because of the “heterophobic” restriction to morphisms within one category or
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within the other. For instance, the UMP for the hom unit ηx : x → GFx is that given any
morphism f ∗ : x → Ga in X, there is a unique morphism f∗ : Fx → a in the other category
A such that a G-functorial image back in the original category X gives the factorization

of f through the unit: x
f ∗−→ Ga = x

ηx−→ GFx
G f∗−→ Ga. The UMP has to go back and

forth between homomorphisms in the two categories because it avoids mention of the
heteromorphisms between the categories, as shown in Figure 4.

Figure 4. Over-and-back diagram for universality of η x.

Figure 5 gives the dual diagram.

Figure 5. Over-and-back diagram for universality of εa.

The universal mapping property for the het unit hx : x ⇒ Fx is much simpler (i.e.,
no G and no over-and-back). Given any heteromorphism f : x ⇒ a, there is a unique

homomorphism f∗ : Fx → a in the codomain category A such that x
f⇒ a = x hx⇒ Fx

f∗−→ a.
And the dual universality property for the het counit ea : Ga⇒ a is that given any f : x ⇒ a,

there is a unique homomorphism f ∗ : x → Ga such that x
f⇒ a = x

f ∗→ Ga ea⇒ a (with no
mention of F or any over-and-back). Both universality properties are represented in the
adjunctive square diagram.

x
∃! f ∗−→ Ga

hx ⇓ u∀ f ⇓ ea

Fx
∃! f∗−→ a

For instance, in the “old days” (before category theory), one might have stated the universal
mapping property of the free group Fx on a set x by saying that for any map f : x⇒ a from x
into a group a, there is a unique group homomorphism f∗ : Fx→ a that preserves the action

of f on the generators x, i.e., such that x
f⇒ a = x ↪→ Fx

f∗→ a [12] (p. 69). That is, there is just
the left half-adjunction or left universal part of the free-group adjunction. There is nothing
sloppy or “wrong” in that old way of stating the universal mapping property.

Dually for the hom counit, given any morphism f∗ : Fx → a in A, there is a unique
morphism f ∗ : x → Ga in the other category X, such that the F-functorial image back

in the original category A gives the factorization of f∗ though the counit Fx
f∗−→ a =

Fx
F f ∗−→ FGa εa−→ a. For the het counit, given any heteromorphism f : x ⇒ a, there is a

unique homomorphism f ∗ : x → Ga in the domain category X such that x
f⇒ a = x

f ∗−→
Ga ea⇒ a. Putting these two het UMPs together yields the het adjunctive square diagram,
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just as previously putting the two hom UMPs together yielded the hom-pair adjunctive
square diagram.

3.4. Het Natural Transformations

One of the main motivations for category theory was to mathematically characterize
the intuitive notion of naturality for homomorphisms as in the standard example of the
canonical linear homomorphism with a vector space embedded into its double dual. Many
heteromorphisms are rather arbitrary, but certain ones are quite canonical so we should
be able to mathematically characterize that canonicity or naturality just as we do for
homomorphisms. Indeed, the notion of a natural transformation is immediately generalized
to functors with different codomains by taking the components to be heteromorphisms.
Given functors F : X→ A and H : X→ B with a common domain and given a het-bifunctor
Het : Aop × B → Set, a chimera or het natural transformation relative to Het φ : F ⇒ H is
given by a set of heteromorphisms {φx ∈ Het(Fx, Hx)} indexed by the objects of X such
that for any j : x → x′, the following diagram commutes.

Fx
φx
=⇒ Hx

Fj ↓ ↓ Hj

Fx′
φx′=⇒ Hx′

Het natural transformation

As with any commutative diagram involving heteromorphisms, composition and
commutativity are defined using the het-bifunctor (similar remarks can be applied to any
ordinary commutative hom diagram where it is the hom-bifunctor behind the scenes).
For instance, the above commutative squares that define het natural transformations
are unpacked as the following behind-the-scenes commutative squares in Set for the
underlying het-bifunctor.

φx

1 −→ Het(Fx, Hx)
φx′ ↓ ↓ Het(Fx, Hj)

Het(Fx′, Hx′) −→ Het(Fx, Hx′)
Het(Fj, Hx′)

The composition Fx
φx
=⇒ Hx

Hj−→ Hx′ is Het(Fx, Hj)(φx) ∈ Het(Fx, Hx′), the compo-

sition Fx
Fj−→ Fx′

φx′=⇒ Hx′ is Het(Fj, Hx′)(φx′) ∈ Het(Fx, Hx′), and commutativity means
that they are the same element of Het(Fx, Hx′). These het natural transformations do not
compose like the morphisms in a functor category but they are acted upon by the natural
transformations in the functor categories on each side to yield het natural transformations.

There are het natural transformations each way between any functor and the identity
on its domain if the functor itself is used to define the appropriate het-bifunctor. That is,
given any functor F : X → A, there is a het natural transformation 1X ⇒ F relative to
the bifunctor defined as Het(x, a) = HomA(Fx, a) as well as a het natural transformation
F ⇒ 1X relative to Het(a, x) = HomA(a, Fx).

Het natural transformations ”in effect” already occur with reflective (or coreflective)
subcategories. A subcategory A of a category B is a reflective subcategory if the inclusion
functor K : A ↪→ B has a left adjoint. For any such reflective adjunctions, the hetero-
morphisms Het(b, a) are the B-morphisms with their heads in the subcategory A so the
representation on the right Het(b, a) ∼= HomB(b, Ka) is trivial. The left adjoint F : B→ A
gives the representation on the left: HomA(Fb, a) ∼= Het(b, a) ∼= HomB(b, Ka). Then, it is
perfectly “natural” to see the unit of the adjunction as defining a natural transformation
η : 1B ⇒ F, but this is actually a het natural transformation (since the codomain of F
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is A). Hence, the conventional (heterophobic) treatment (e.g., [17] (p. 89)) is to define
another functor R with the same domain and values on objects and morphisms as F except
that its codomain is taken to be B so that we can then have a hom natural transformation
η : 1X → R between two functors with the same codomain. Similar remarks hold for
the dual coreflective case where the inclusion functor has a right adjoint and where the
heteromorphisms are turned around, i.e., are B-morphisms with their tail in subcategory A.

Given any adjunction isomorphism HomA(Fx, a) ∼= Het(x, a) ∼= HomX(x, Ga), the
adjoint correlates of the identities 1Fx ∈ HomA(Fx, Fx) are the het units hx ∈ Het(x, Fx)
and the hom units ηx ∈ HomX(x, GFx). The het units together give the het natural
transformation h : 1X ⇒ F, while the hom units give the hom natural transformation
η : 1X → GF. The adjoint correlates of the identities 1Ga ∈ HomX(Ga, Ga) are the het
counits ea ∈ Het(Ga, a) and the hom counits εa ∈ HomA(FGa, a). The het counits together
give the het natural transformation e : G ⇒ 1A, while the hom counits give the hom natural
transformation ε : FG → 1A.

4. Results
4.1. The Product Adjunction for Sets

Let X be the category Set of sets and let A be the category Set2 = Set× Set of ordered
pairs of sets. A heteromorphism from a set to a pair of sets is a pair of set maps with a
common domain ( f1, f2) : W ⇒ (X, Y), which is called a cone. The het-bifunctor is given
by Het(W, (X, Y)) = {W ⇒ (X, Y)}, the set of all cones from W to (X, Y). To construct
a representation on the right, suppose we are given a pair of sets (X, Y) ∈ Set2. How
could one construct a set, to be denoted X×Y, such that all cones W ⇒ (X, Y) from any
set W could be represented by set functions (morphisms within Set) W → X × Y? In
the “atomic” case of W = 1 (the one-element set), a 1-cone 1 ⇒ (X, Y) would just pick
out an ordered pair (x, y) of elements, the first from X and the second from Y. Any cone
W ⇒ (X, Y) would just pick out a set of pairs of elements. Hence, the universal object
would have to be the set {(x, y) : x ∈ X, y ∈ Y} of all such pairs, which yields the Cartesian
product of sets X×Y. The assignment of that set to each pair of sets gives the right adjoint
G : Set2 → Set, where G((X, Y)) = X×Y (and similarly for morphisms). The het counit
e(X,Y) : X × Y ⇒ (X, Y) canonically takes each ordered pair (x, y) as a single element in
X×Y to that pair of elements in (X, Y). The universal mapping property of the Cartesian
product X × Y then holds; given any set W and a cone ( f1, f2) : W ⇒ (X, Y), there is
a unique set function ⟨ f1, f2⟩ : W → X × Y defined by ⟨ f1, f2⟩(w) = ( f1(w), f2(w)) that
factors the cone through the het counit:

W
⟨ f1, f2⟩−→ X×Y

( f1, f2) u ⇓ e(X,Y)
(X, Y)

Right half-adjunction of the product adjunction.

=For the product adjunction, the right half-adjunction is the important one.
Fixing W in Set, how could we find a universal object in Set2 so that all hetero-

morphisms ( f1, f2) : W ⇒ (X, Y) could be uniquely factored through it? The obvious
suggestion is the pair (W, W), which defines a functor F : Set → Set2 and where the
het unit hW : W ⇒ (W, W) is just the pair of identity maps hW = (1W , 1W). Then,
for each cone ( f1, f2) : W ⇒ (X, Y), there is a unique pair of maps, also denoted as
( f1, f2) : (W, W) → (X, Y), which are a morphism in Set2 and which factors the cone
through the het unit:
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W
hW ⇓ u ( f1, f2)

(W, W)
( f1, f2)−→ (X, Y)

Left half-adjunction of the product adjunction.

Splicing the two half-adjunctions along the diagonal gives the following:

W
⟨ f1, f2⟩−→ X×Y

hW ⇓ u( f1, f2) ⇓ e(X,Y)

(W, W)
( f1, f2)−→ (X, Y)

Het adjunctive square for the product adjunction.

The two factor maps on the top and bottom are uniquely associated with the diagonal
cones, and the isomorphism is natural so that we have natural isomorphisms between the
hom-bifunctors and the het-bifunctor:

HomSet2((W, W), (X, Y)) ∼= Het(W, (X, Y)) ∼= HomSet(W, X×Y).

4.2. The Coproduct Adjunction for Sets

The construction dual to the product is the coproduct, which for the category of sets
is the disjoint union of sets. Let A be the category Set of sets and let X be the category
Set2 = Set × Set of ordered pairs of sets. A heteromorphism from a pair of sets to
a set is a pair of set maps with a common codomain (g1, g2) : (X, Y) ⇒ Z, which is
called a cocone. The het-bifunctor is given by Het((X, Y), Z) = {(X, Y)⇒ Z}, the set
of all cocones from (X, Y) to Z. To construct a representation on the left, suppose we
are given a fixed pair of sets (X, Y) ∈ Set2. The coproduct or disjoint union is the set
F((X, Y)) = X + Y such that all cocones (X, Y) ⇒ Z to any set Z could be represented
by set functions (morphisms within Set) X + Y → Z. The het unit h(X,Y) is a canonical
“injection” cocone h(X,Y) = (iX, iY) : (X, Y) ⇒ X + Y. Here, for x ∈ X, iX(x) is the
copy of x in X + Y, and similarly, for y ∈ Y, iY(y) is the copy of y in X + Y. Given any
cocone (g1, g2) : (X, Y) ⇒ Z, there is a unique set map {g1, g2} : X + Y → Z [which
takes x in the copy of X in X + Y to g1(x) and takes y in the copy of Y to g2(y)] such that

(X, Y)
(iX ,iY)⇒ X + Y

{g1,g2}→ Z = (X, Y)
(g1,g2)⇒ Z.

(X, Y)
(iX , iY) ⇓ u (g1, g2)

X + Y
{g1,g2}−→ Z

Left half-adjunction for coproduct adjunction.

The left half-adjunction is the important one for the coproduct adjunction. The factor
map {g1, g2} represents within Set the action of the cocone (g1, g2) : (X, Y)⇒ Z, which is
a heteromorphism from an object in Set2 to an object in Set. That representation gives the
natural isomorphism:

HomSet(X + Y, Z) ∼= Het((X, Y), Z).

Now, fix the object Z ∈ Set and find the representation on the right of any hetero-
morphism from any object (X, Y) ∈ Set2 to Z. We need a universal object in Set2 and a
universal morphism from that object to Z so that any cocone (g1, g2) : (X, Y) ⇒ Z can
be uniquely factored through the universal. The obvious choice of the object in Set2 to
represent Z is G(Z) = (Z, Z) and the obvious universal cocone (Z, Z) ⇒ Z is the het
counit eZ = (1Z, 1Z), a pair of identity maps. The unique factorization is so trivial that
we will use the same notation (g1, g2) for both the heteromorphism (X, Y) ⇒ Z and the
homomorphism (X, Y)→ (Z, Z) within the category Set2.
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(X, Y)
(g1,g2)−→ (Z, Z)

(g1, g2) u ⇓ (1Z, 1Z)

Z
Right half-adjunction of the coproduct adjunction.

The correlation between the het (g1, g2) and the hom (g1, g2) gives the representation
on the right:

Het((X, Y), Z) ∼= HomSet2((X, Y), (Z, Z)).

Splicing the two half-adjunctions along the diagonal gives the following:

(X, Y)
(g1,g2)−→ (Z, Z)

h(X,Y) ⇓ u(g1,g2) ⇓ eZ

X + Y
{g1,g2}−→ Z

Het adjunctive square for the coproduct adjunction.

Combining the left and right representations gives the usual characterization of an
adjunction as a natural isomorphism of two hom-functors (ignoring the het-bifunctor
middle term):

HomSet(X + Y, Z) ∼= Het((X, Y), Z) ∼= HomSet2((X, Y), (Z, Z)).

4.3. Adjoints to Forgetful Functors

Perhaps the most accessible adjunctions are the free forgetful adjunctions between
X = Set and a category of algebras such as the category of groups A = Grps.
The right adjoint G : A→ X forgets the group structure to give the underlying set GA of a
group A. The left adjoint F : X→ A gives the free group FX generated by a set X.

For this adjunction, the heteromorphisms are any set functions X
f⇒ A (with

the codomain being a group A), and the het-bifunctor is given by such functions:
Het(X, A) = {X ⇒ A} (with the obvious morphisms). A heteromorphism f : X ⇒ A
determines a set map f ∗ : X → GA trivially and it determines a group homomorphism
f∗ : FX → A by mapping the generators x ∈ X to their images f (x) ∈ A and then mapping
the other elements of FX as they must be mapped in order for f∗ to be a group homomor-
phism. The het unit hX : X ⇒ FX is the insertion of the generators into the free group, and
the het counit eA : GA⇒ A is just the retracting of the elements of the underlying set back
to the group. These factor maps f ∗ and f∗ uniquely complete the usual two half-adjunction
triangles, which together give the following:

X
f ∗−→ GA

hX ⇓ u f ⇓ eA

FX
f∗−→ A

Het adjunctive square for the free group adjunction.

These associations also give us the following two representations:

Hom(FX, A) ∼= Het(X, A) ∼= Hom(X, GA).

In general, the existence of a left adjoint to U : A → Set (i.e., a left representation
of Het(X, A) = {X ⇒ A}) will depend on whether or not there is an A-object FX with

the least or minimal structure so that every chimera X
f⇒ A will determine a unique

representing A-morphism f∗ : FX → A.
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The existence of a right adjoint to U will depend on whether or not for any set X, there
is an A-object IX with the greatest or maximum structure so that any chimera A⇒ X can
be represented by an A-morphism A→ IX.

Consider the underlying set functor U : Pos → Set from the category of partially
ordered sets (an ordering that is reflexive, transitive, and anti-symmetric) with order-
preserving maps to the category of sets. It has a left adjoint since each set has a least partial

order on it, namely the discrete ordering. Hence, any chimera function X
f⇒ A from a set

X to a partially ordered set or poset A could be represented as a set function X
f ∗−→ UA

or as an order-preserving function DX
f∗−→ A, where DX gives the discrete ordering on

X. The functor giving the discrete partial ordering on a set is the left half-adjoint to the
underlying the set function.

In the other direction, one could take as a chimera any function A
f⇒ X (from a poset

A to a set X), and it is represented on the left by the ordinary set function UA
f∗−→ X so the

left half-adjunction trivially exists:

A ?−→ IX?
hA ⇓ u f ↓?

UA
f∗−→ X

Left half-adjunction (with no right half-adjunction).

But the underlying set functor U does not have a right adjoint since there is no
maximal partial order IX on X so that any chimera A c⇒ X could be represented as
an order-preserving function f (c) : A → IX. To receive all the possible orderings, the
ordering relation would have to go both ways between any two points, which would then
be identified by the anti-symmetry condition so that IX would collapse to a single point
and the factorization of c through IX would fail. (Thanks to Vaughn Pratt for the example).
Thus, poset-to-set chimera A ⇒ X can only be represented on the left. This is a case of
where a het between two categories is only represented inside one of the categories.

In relaxing the anti-symmetry condition, let U : Ord→ Set be the underlying set func-
tor from the category of preordered sets (reflexive and transitive orderings) to the category
of sets. The discrete ordering again gives a left adjoint. But now there is also a maximal
ordering on a set X, namely the “indiscrete” ordering IX on X (the “indiscriminate” or
“chaotic” preorder on X), which has the ordering relation both ways between any two points.
Then, a preorder-to-set chimera morphism f : A ⇒ X (just a set function ignoring the

ordering) can be represented on the left as a set function UA
f∗−→ X and on the right as

an order-preserving function A
f ∗−→ IX so that U also has a right adjoint I, and we have

the following:

A
f ∗−→ IX

hA ⇓ u f ⇓ eX

UA
f∗−→ X

Het adjunctive square for the indiscrete underlying adjunction on preorders.

4.4. Reflective Subcategories

Suppose that A is a subcategory of X with G : A ↪→ X the inclusion functor and suppose
that it has a left adjoint F : X → A. Then, A is said to be a reflective subcategory of X, the left
adjoint F is the reflector, and the adjunction is called a reflection: HomA(Fx, a) ∼= HomX(x, Ga).
For all reflections, the chimera morphisms are the morphisms x⇒ a in the ambient category X
with their heads in the reflective subcategory A. Hence, the het-bifunctor would be

Het(x, a) = HomXA(x, a)
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where the XA subscript indicates that x can be any object in X but that a is any element
of the subcategory A. Note the two ways of seeing any f ∈ Het(x, a) = HomXA(x, a).
From one viewpoint, f ∈ HomXA(x, a) ⊆ HomX(x, a) so that f is just a morphism inside
the category X, but we also view it as a chimera with its tail in X and head in A. Since
G is the inclusion functor, it just takes a as an element of A to itself as an element of X
and similarly for morphisms. Thus, we insert Het(x, a) in the middle to obtain the two
representation isomorphisms:

HomA(Fx, a) ∼= Het(x, a) ∼= HomX(x, Ga).

There is also the dual case of a coreflective subcategory, where the inclusion functor has a
right adjoint and where the chimera morphisms are turned around (tail in the subcategory
and head in the ambient category). This case will be used in the next section, but here, I
will focus on reflective subcategories.

For an interesting example of a reflector dating back five centuries, we use the modern
mathematical formulation of double-entry bookkeeping [24]. Let Ab be the category of
abelian (i.e., commutative) groups where the group operation is written as addition. Thus
0 is the identity element, a+ a′ = a′+ a, and for each element a, there is an element−a such
that a + (−a) = 0. Let CMon be the category of commutative monoids so the addition
operation has the identity 0 but does not necessarily have an inverse. Let G : Ab ↪→ CMon
be the inclusion functor.

In 1494, the mathematician Luca Pacioli published an accounting technique that had been
developed in practice during the 1400s and which became known as double-entry bookkeeping [25].
Pacioli acknowledged having seen an earlier unpublished description of double-entry booking
by Benedetto Cotrugli, which has now been published [26]. In essence, the idea was to carry
out additive arithmetic with additive inverses using ordered pairs [x // x′] of non-negative
numbers called T-accounts. (The double-slash separator was suggested by Pacioli. “At the
beginning of each entry, we always provide ‘per’, because, first, the debtor must be given, and
immediately after the creditor, the one separated from the other by two little slanting parallels
(virgolette), thus, //, . . . .” [25] (p. 43)). The number on the left side was called the debit entry, and
the number on the right, the credit entry. T-accounts were added by adding the corresponding
entries: [x // x′] + [y // y′] = [x + y // x′ + y′]. Two T-accounts were deemed equal if their
cross-sums were equal (the additive version of the equal cross-multiples was used to define the
equality of multiplicative ordered pairs or fractions). Thus,

[x // x′] = [y // y′] if x + y′ = x′ + y.

Hence, the additive inverse was obtained by “reversing the entries” (as accountants say):

[x // x′] + [x′ // x] = [x + x′ // x′ + x] = [0 // 0].

To obtain the reflector or left adjoint F : CMon→ Ab to G, we need only note that Pacioli
was implicitly using the fact that the normal addition of numbers is cancellative in the sense that
x + z = y + z implies x = y. Since commutative monoids do not in general have that property,
we need only to tweak the definition of the equality of T-accounts [13] (p. 17):

[x // x′] = [y // y′] if there is a z such that x + y′ + z = x′ + y + z.

This construction with the induced maps then yields a functor F : CMon→ Ab that
takes a commutative monoid m to a commutative group Fm = P(m). The group P(m)

is usually called the “group of differences” or “inverse completion”, and, in algebraic
geometry, its generalization is called the “Grothendieck group”. However, due to about a
half-millennium of priority, we will call the additive group of differences the Pacioli–Cotrugli
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group of the commutative monoid m. For any such m, the het unit hm : m⇒ Fm = P(m),
which takes an element x to the T-account [0 // x] with that credit balance (the debit
balance mapping would do just as well).

For this adjunction, a heteromorphism f : m ⇒ a is any monoid homomorphism from
a commutative monoid m to any abelian group a (being only a monoid homomorphism,
it does not need to preserve any inverses that might exist in m). The Pacioli group has
the following universality property: for any heteromorphism f : m⇒ a, there is a unique

group homomorphism f∗ : Fm → a such that m hm⇒ Fm
f∗→ a = m

f⇒ a. The group
homomorphism factor map is f∗([x′ // x]) = c(x) + (−c(x′)). The right adjoint G just
takes a commutative group to its underlying commutative monoid. This establishes the
other representation isomorphism of the adjunction:

HomAb(Fm, a) ∼= Het(m, a) ∼= HomCMon(m, Ga).

5. Discussion and Concluding Remarks
This paper inevitably has three themes:

• (1) The first and logically prior theme is showing that heteromorphisms can be rigor-
ously treated as part of category theory—rather than just as stray chimeras roaming in
the wilds of mathematical practice.

• (2) The main theme is showing how adjoint functors arise from the representations
within two categories of the heteromorphisms between the categories.

• (3) The third theme is the question of whether or not adjunctions are really the basic
concept, since the heteromorphic treatment, unlike the standard heterophobic treat-
ment, shows that an adjunction can be broken into two half-adjunctions or universal
constructions that involve only the notion of representable functors.

In the first theme, category theory has always been presented as embodying the
idea of grouping mathematical objects of a certain sort together with their appropriate
morphisms in a “category”. In some respects, this homomorphic theme became the leading
theme just as in Felix Klein’s Erlanger Program, where geometries were characterized by
the invariants of a specified class of transformations. Indeed, in their founding paper,
Eilenberg and Mac Lane noted that category theory “may be regarded as a continuation
of the Klein Erlanger Program, in the sense that a geometrical space with its group of
transformations is generalized to a category with its algebra of mappings” [4] (p. 237).
Hence, the whole concept of a “heteromorphism” between objects of different categories
has seemed like a cross-species hybrid that is out-of-place and running against the spirit of
the enterprise. Functors were defined to handle all the external relations between categories
so object-to-object inter-category morphisms had no “official” role.

At the outset of this paper, a number of testimonials were quoted about the centrality
of adjunctions in category theory and thus as a foundational lens with which to see what is
important, universal, and natural in mathematics. Once heteromorphisms were rigorously
treated using het-bifunctors (in analogy to treating homomorphisms with hom-bifunctors),
it quickly became clear that an adjunction between two categories was closely related to the
heteromorphisms between the objects of the two categories. Our main theme about adjoints
is that left and right adjoints arise as the left and right representations within the categories
of the heteromorphisms between the categories. Given the importance of adjoints, this
makes an argument for taking heteromorphisms “out of the closet” and recognizing them
as part of the conceptual family of category theory.

In our third theme, we have seen that all adjunctions arise as birepresentations of
het-bifunctors, where the birepresentation can be split into a left and a right half-adjunction.
Moreover, there can be either a left or right representation without the other (e.g., the partial
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order/underlying set was a simple example but the tensor product is another example).
Often, one of a pair of adjoints gives the important concept, and the other adjoint functions
as an auxiliary device to fill out the het-free notion of an adjunction. In the wilds of
mathematical practice, the important left or right representation is routinely used along
with the necessary hets without the auxiliary devices. Hence, there are grounds to conclude
that it is the concept of a universal mapping property (which is naturally formulated as a
representation of hets) that is the “most important concept in category theory” and that
adjunctions arise as the special case of bi-representations of hets. (See [16] for an extensive
development of this viewpoint.)

The idea of taking representable functors and universals as the conceptual lens (rather
than adjoint functors) is not new. The treatment of UMPs is based on the notion of a
representable functor associated with Alexander Grothendieck [27] (representable functors
are defined in the first section of the first Chapter 0), and it helps to clear up another mystery:

As we can see by looking at his [Grothendieck’s] lectures in the Séminaire
Bourbaki from 1957 until 1962, the notion of representable functors became one
of the main tools he used. . . . It is far from clear why Grothendieck decided to use
this notion instead of, say, adjoint functors, . . . . It is also clear from the various
seminars that Grothendieck thought in terms of universal “problems”, that is
he tried to formulate the problems he was working on in terms of a universal
morphism: finding a solution to the given problem amounted to finding a
universal morphism in the situation. Grothendieck saw that the latter notion
was subsumed under the notion of representable functor [28] (pp. 102–103).

Grothendieck took the notion of a representable functor as fundamental (as solving a
universal problem), where adjoints arise as the special case of a particularly nice birepresentation.

In conclusion, I think the case can be made that the universal constructions [16] of
category theory are the fundamental notions, rather than the very important special case of
adjunctions, to focus the conceptual lenses on what is foundational in mathematics and,
perhaps, in other sciences–not to mention in philosophy (see Appendix A).
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Appendix A. Philosophical Applications of Universals
Appendix A.1. Non-Self-Predicative and Self-Predicative Universals

The purpose of this appendix is to briefly outline some more philosophical or specula-
tive applications of the category-theoretic universals.

An object uF is a universal for a property F(x) if every a such that F(a) and only those
a’s have a “participation” (µϵθϵξιζ or methexis) relation µ with the universal uF:

a µ uF iff F(a).

The best-known universals are just the sets {x|F(x)} (for suitable predicates F(x) in
set theory) where participation is set membership µ =∈:

a ∈ {x|F(x)} iff F(a).
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In axiomatic set theory, these universals have to be of higher rank or type than their
members so they might be called abstract universals, but for our purposes, they are also
non-self-predicative universals since a set cannot be a member of itself.

For the universals of category theory, the participation relation is that it uniquely factors
and each universal factors through itself through the identity morphism, so the universal
also has the property for which it is universal. Hence, the category theory universals could
be called concrete universals (in contrast to the abstract universals of set theory), and they
are self-predicative universals.

Example 1: For the Cartesian product construction X × Y in Sets, the property is
that of being a cone of set functions f1 : W → X and f2 : W → Y from a single set W
to the sets X and Y. The concrete and self-predicative universal for that property is the
cone of projections πX : X × Y → X and πY : X × Y → Y. Then, a cone ( f1, f2) uniquely
factors through the projections (πX , πY) iff the cone has the property of “being a cone
of set functions f1 : W → X and f2 : W → Y from a single set W to the sets X and Y”.
That is, given any set W and a cone ( f1, f2) : W ⇒ (X, Y), there is a unique set function
⟨ f1, f2⟩ : W → X×Y defined by ⟨ f1, f2⟩(w) = ( f1(w), f2(w)) that factors the cone through
het counit e(X,Y) = (πX , πY) so that the following diagram commutes with f = ( f1, f2).

W
⟨ f1, f2⟩−→ X×Y
u f ⇓ e(X,Y)

(X, Y)

Example 2: For the free-group F(x), the property is “being a set-to-group het
f : x ⇒ g from the set x to any group g”, and the universal for the property is the
het unit hx : x ⇒ F(x). Thus, for any f : x ⇒ g, there is a unique group homomorphism
g( f ) : F(x) → g that factors f through the het unit hx : x ⇒ F(x), i.e., that makes the
following diagram commute.

x
hX ⇓ u f

F(x)
g( f )−→ g

Starting with Plato, there is a rich history of the notion of universals in Western
philosophy. Most of their development has focused on notions of non-self-predicative
universals, which were formalized in set theory. The notion of a self-predicative universal
has received relatively little attention, but that notion has now also been formalized in
category theory. And even in category theory, the heteromorphic analysis shows that the
fundamental notion is not the special case of the birepresentations that are adjunctions but
universal constructions or UMPs.

A more extensive analysis of non-self-predicative and self-predicative universals has
been developed elsewhere [3,29].

Appendix A.2. Another Way to Combine Universals

Universals are represented by triangular het diagrams. We have seen how two uni-
versal het triangular diagrams can be joined together along the diagonal to form a het
adjunctive square diagram. Since adjunctions have a direction, we could take one category
as the “sending category” and the other one as the “receiving category”. Then, a het from an
object in the sending category to an object in the receiving category is uniquely “internalized”
in both categories, as illustrated in the adjunctive square diagram of Figure A1.
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Figure A1. Adjunctive square diagram with sending and receiving category.

In this case, the sending and receiving universals are in different categories.
But there are many examples where the same entity can both receive and send, like

a recorder that can both record and play back, a file program that can both save files and
retrieve files, a coder that can both encode and decode messages, and, last but not least,
the human brain that can both receive information from the environment and act upon the
same environment.

And there is another way that two triangular diagrams can be joined together at the
(right angle) corner to form a “butterfly” diagram (the two triangles being the wings of the
butterfly), that is, another way for category theory to model these “universals” that can
both receive and send messages or information with an “environment”.

The following diagram is for an encoder–decoder example where the Cartesian coordi-
nate system for a plane encodes a given point P in the geometrical plane with its Cartesian
coordinates (xP, yP), and given a pair of Cartesian coordinates (xP, yP), it sends or plots the
point P on the geometrical plane. The diagonal hets just give an association of a geometrical
point P with a set of coordinates (xP, yP). The universal encoder–decoder operates with
the universal encoding isomorphism “select coordinates of P” and the universal decoding
isomorphism “plot coordinates of (xP, yP)” as shown in Figure A2.

Figure A2. Universal receiving/sending example.

For a strictly category-theoretic model, the object in the center has to be both a left and
right universal. For instance, a finite product of modules M = (m1, . . . , mn) over a given
ring R is both a direct product and a coproduct (i.e., a biproduct) in ModR [14] (pp. 173–174).
The universal het hM is the cocone of injections of the ordered n-tuple of modules M in

the n-fold product Modn
R to the coproduct

n⊕
i=1

Mi, and the universal het eM is the cone of

projections from ∑n
i=1 mi =

n⊕
i=1

mi to the n-tuple M in Modn
R. The upper diagonal het is a

cocone of module homomorphisms from the n-tuple M to any module m, and the lower
diagonal het is a cone from any module m to the n-tuple M. Then, the cocone and cone
both factor uniquely through the het hM and the het eM, respectively, as illustrated in the
following diagram.
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M
hM ⇓ u cocone

m −→ ∑n
i=1 mi =

n⊕
i=1

mi −→ m

cone u ⇓eM

M

The speculative application of a left and right universal is to model the human brain.
For instance, let us take the language faculty in the brain as an example. Then, there is
an interesting interpretation of an auditory signal from the environment being internally
represented as being “understood” or “recognized” as having a certain meaning. This is
the intentionality of perception. For visual perception, it is not just “seeing” some visual
inputs but “seeing them as” some recognized object. For auditory perception, there can
be meaningless auditory input such as just noise or words in a foreign language, but the
internal representation means the recognition of the input’s meaning.

Just as we can see the internal factor maps as internalizing or recognizing some external
input, on the sending side, we can see some internal “speech act” as being externalized as
auditory output to the environment. There can also be auditory outputs such as random
mumblings (e.g., snoring), which are not the externalization of some internal speech act.
When an internal speech act is externalized, that is an example of the intentionality of
action, deliberate speech action in this case. If we are going to only represent the left
and right universal mapping properties of the language faculty, then we have to assume
that the external auditory inputs are intelligible and that the external auditory outputs
are deliberate as illustrated in Figure A3.

Figure A3. Butterfly diagram for language faculty.

Once we have isolated category theoretic universals, we have seen how left and right
universals can be combined not only one way as an adjunction but also another way as a left–right
universal or receiving–sending universal, which seems to have interesting applications [30].
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