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Abstract: A basic duality arises throughout the mathematical and natural sciences. Tradi-
tionally, logic is thought to be based on the Boolean logic of subsets, but the development
of category theory in the mid-twentieth century shows the duality between subsets and
partitions (or equivalence relations). Hence, there is an equally fundamental dual logic
of partitions. At a more basic or granular level, the elements of a subset are dual to the
distinctions (pairs of elements in different blocks) of a partition. The quantitative version of
subset logic is probability theory (as developed by Boole), and the quantitative version of
the logic of partitions is information theory re-founded on the notion of logical entropy. The
subset side of the duality uses a one-sample (or one-element) approach, e.g., the mean of a
random variable; the partition side uses a two-sample (or pair-of-elements) approach. This
paper gives a new derivation of the variance (and covariance) based on the two-sample
approach, which positions the variance on the partition and information theory side of the
duality and thus dual to the mean.

Keywords: fundamental subsets–partitions duality; logic of subsets; logic of partitions;
logical entropy; variance; covariance; mean
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1. Introduction: A Basic Duality in the Exact Sciences
The (new) logic of partitions (or equivalence relations) ([1–3]) is category-theoretically

dual to the usual Boolean logic of subsets. This initiated a series of developments, some new
and some reformulations of older ideas, that showed how the duality extended throughout
the mathematical sciences [4] (including quantum mechanics and beyond into the life sci-
ences). The dual logics have quantitative versions. The quantitative version of subset logic
is probability theory, which is why George Boole’s book was entitled “An Investigation of the
Laws of Thought on which are founded the Mathematical Theories of Logic and Probabilities” [5].
Gian-Carlo Rota conjectured on numerous occasions [6] that subsets are to probability as
partitions are to information:

Subsets
Probability ≈ Partitions

Information

Accordingly, partitions quantitatively defined the notion of logical entropy. Ordinarily,
information and coding theory is based on Shannon entropy, which is not a measure (in
the sense of measure theory) and has various anomalies, e.g., negative mutual information
of some sets of three random variables (r.v.s), which are pair-wise independentbut not
mutually independent. Logical entropy quantifies the notion of information-as-distinctions
and is a measure—specifically, a probability measure—and thus always non-negative.
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There is a certain methodology used in developing this duality. That is, the notions
associated with the subset logic are defined in terms of single elements, and the notions
associated with partition logic are defined in terms of pairs of elements (or even ordered
pairs). The simplest notion in mathematical statistics is the mean of a random variable
(r.v), which is associated with the single samplings of a random variable. The partition-
motivated notion of a pair of samples of an r.v. has been found to be the logical basis for
variance (and similarly covariance). This is not, however, the usual definition of variance
(or covariance) in textbooks. This definition of the variance seems to be so little known that
it has been announced as a new discovery [7], although that derivation of variance is much
older [8] (p. 42) and was known as the variance formula that does not use the mean.

Our purpose here is to apply this derivation of variance and covariance in the context
of the fundamental category-theoretic duality, starting with the dual logics of subsets and
partitions. Moreover, this treatment of variance and covariance places those notions firmly
on the information-theoretic side of the duality. Indeed, the mean and the variance are dual
concepts in terms of the duality. Hence, we begin with the duality at the logical level.

2. Methods
2.1. The Duality of Subsets and Partitions

Today, Boolean logic is almost always presented as “proposition logic”, which is a
special case of the logic of subsets. Category theory started in 1945 [9]. It provides the full
mathematical treatment of the aforementioned basic duality as the “turn-around-the-arrows”
duality. A subset or generally a subobject may be called a “part”, and “The dual notion
(obtained by reversing the arrows) of the “part” is the notion of the partition” [10] (p. 85).

Propositions do not have category–theory duals, so the idea of a dual logic of partitions
was missed when Boolean logic was confined to propositions. Richard Dedekind and Ernst
Schröder defined the lattice operations of join and meet in the nineteenth century. A “logic”
of certain types of equivalence relations was defined by Gian-Carlo Rota and colleagues [11]
in the twentieth century, but it was without any notion of implication for partitions—which
is necessary to be considered a logic (as opposed to just a lattice). Indeed, no new operations
on partitions or equivalence relations were developed in the 20th century.

Equivalence relations are so ubiquitous in everyday life that we often forget
about their proactive existence. Much is still unknown about equivalence
relations. Were this situation remedied, the theory of equivalence relations
could initiate a chain reaction generating new insights and discoveries in many
fields dependent upon it.
This paper springs from a simple acknowledgment: the only operations on the
family of equivalence relations fully studied, understood and deployed are the
binary join ∨ and meet ∧ operations. [12] (p. 445)

2.2. The Two Lattices of Subsets and of Partitions

A set π = {B1, . . . , Bm} of non-empty subsets (blocks or cells) of a universe set
U = {u1, . . . , un} (|U| ≥ 2) is called a partition. An equivalence relation on U is a reflexive,
symmetric, and transitive binary relation. A partition and an equivalence relation are
equivalent notions, just looked at from different perspectives. The classes of equivalent
elements of U for an equivalence relation are the blocks of the corresponding partition.

The category-theoretic (CT) reverse-the-arrows duality of subsets and partitions is
brought about by their CT characterizations: A subset of U is the image of a function X → U,
and a partition on U is the co-image (i.e., inverse-image) of a function U → X.

An ordered pair of elements in different blocks of a partition is called a “distinction”,
or “dit”, and an ordered pair of equivalent elements, i.e., elements in the same block, is
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called an “indistinction”, or “indit”, of the partition. The set of distinctions, or ditset, is
dit(π) ⊆ U × U,and its complement in U × U is the set of indistinctions or indits indit(π),
which is just the equivalence relation version of the partition π.

Things are simple in the Boolean lattice of subsets since the join is just the union of
subsets, the meet is the intersection of subsets, and the partial order is the inclusion of
subsets. The top of the lattice is the universe set U, and the bottom is the empty set ∅.
To form a Boolean logic or Boolean algebra, the implication or conditional operation on
subsets of U is denoted S ⊃ T and is defined as Sc ∪ T (where Sc is the complement of S).
It is important to notice that when the implication S ⊃ T is equal to the top U, then the
partial order holds, i.e., S ⊂ T.

Partitions on U also form a lattice, the partition lattice Π(U). Given π = {B1, . . . , Bm}
and σ = {C1, . . . , Cm′} partitions on U, the join π ∨ σ is the partition on U whose blocks
are the non-empty intersections Bj ∩ Cj′ for j = 1, . . . , m and j′ = 1, . . . , m′. The union of
the ditsets, i.e., dit(π ∨ σ) = dit(π) ∪ dit(σ), is the ditset of the join. Since the join S ∪ T in
the lattice of subsets is just the union of the elements of the two subsets S, T ⊆ U, we see
that the distinctions or “Dits” of a partition play the same role as the elements or “Its” of a
subset in the granular duality between subsets and partitions.

The intersection of two equivalence relations is always an equivalence relation, so
there is a the smallest equivalence relation containing the union indit(π) ∪ indit(σ), and
the meet π ∧ σ is the corresponding partition.

The newly defined implication operation on partitions, denoted σ ⇒ π, is the partition
that is like π except when a block Bj ∈ π is contained in some block Cj′ ∈ σ, i.e., Bj ⊆ Cj′ ,
and then Bj is replaced by its discretization, i.e., by the singleton blocks of its elements.

The partitions on a set have a partial order called refinement where π refines σ, written
σ ≾ π, if for every block Bj ∈ π, there is a block Cj′ of σ such that Bj ⊆ Cj′ . Intuitively,
π can be obtained from σ by chopping up some blocks of σ. Some older texts ([13,14])
define the “lattice of partitions” with the reverse partial order (which reverses the join and
meet), which Gian-Carlo Rota called “unrefinement” or “reverse refinement” [6] (p. 30).
The partial order on subsets is the inclusion of elements, and the refinement of partitions is
just the inclusion of distinctions, i.e., σ ≾ π if and only if dit(σ) ⊆ dit(π). This is one way
the dual connection between “elements” and “distinctions” shows itself. The top of the
lattice of partitions is the discrete partition 1U = {{u}}u∈U , where all blocks are singletons
and the bottom is the indiscrete partition 0U = {U}, where the only block is U. The addition
of the implication operation turns the (19th-century) notion of a partition lattice into the
(21st-century) notion of a partition algebra.

When the respective implications are equal to the top element, then and only then the
partial order relation holds, i.e.,

S ⊃ T = U iff S ⊆ T
σ ⇒ π = 1U iff σ ≾ π.

This cements the full dual relationship between the two lattices illustrated in Figure 1 for
U = {a, b, c}.

Table 1 summarizes the duality between the subset lattice ℘(U) and the partition
lattice Π(U).
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Figure 1. Lattices of subsets and of partitions.

Table 1. Elements–distinctions duality between the two dual lattices.

Dualities Boolean Lattice of Subsets Lattice of Partitions

“Its” or “Dits” Elements of subsets Distinctions of partitions

Partial order S ⊆ T dit(σ) ⊆ dit(π)

Join S ∨ T = S ∪ T dit(π ∨ σ) = dit(π) ∪ dit(σ)

Top Subset U with all elements Partition 1U with all distinctions

Bottom Subset ∅ with no elements Partition 0U with no distinctions

Hence, we can extend Rota’s duality statement to that between elements of subsets
and distinctions of partitions:

Elements
Subsets ≈ Distinctions

Partitions .

One aspect of the dual concepts of elements and distinctions (that we will employ
later), is that elements are a one-variable concept while distinctions are pairs of elements.
The basic questions about elements are, for instance, whether or not a predicate applies to
it, which is a question about existence, i.e., whether or not it exists in the subset of elements
with that property. The basic questions about distinctions are about, given two elements,
whether or not they are distinct in the partition or whether or not they are equivalent
or not in the corresponding equivalence relation. As we will see, this duality between
single-element concepts and pair-concepts comes out in statistics.

2.3. Fundamental Status of the Two Lattices

The notions of a subset of a set and a partition on a set are defined without any
additional structure on the sets. Hence, the lattices, algebras, and logics of those two
notions have a certain fundamental status. Given a topology or a partial order on a set, then
other lattices can be defined in terms of that additional structure. But the notions of subsets
and partitions require no such additional structure, and thus implying their fundamentality.
Moreover, subsets and partitions are category-theoretically dual concepts.

The two dual logics provide a modern model for the old Aristotelian duality of
substance versus form (as in information) [15]. We can tell two abstract “creation stories”
by moving up in the two lattices from the bottom to the top. We see that the existence of
substance increases in the subset lattice while form stays constant (always classical in the
sense of being fully distinct), and the reverse happens in the partition lattice.

For each lattice where U = {a, b, c}, we start at the bottom and move towards the top
in Figure 2.
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Figure 2. Moving up the subset and partition lattices.

There are no substances or “Its” (elements) at the bottom ∅ of the subset lattice,
and as one moves up, new “Its” or elements appear but are always fully formed, i.e., no
indefiniteness, until one reaches the full universe U. At the bottom 0U of the partition lattice,
there are no dits (distinctions), i.e., dit(0U) = ∅, and all the substance already appears but
with no form (i.e., no “Dits” in 0U , just as no “Its” in ∅). As one moves up the lattice of
partitions, form (as in in-form-ation) is created by making new dits or distinctions until
reaching the partition 1U that makes all possible distinctions, i.e., dit(1U) = U × U − ∆,
where ∆ = {(ui, ui)|ui ∈ U} is the diagonal of all the self-pairs of elements of U, since an
element cannot be distinguished from itself.

The progress from the bottom to the top of the two lattices can be described as two
creation stories.

• Subset creation story: “In the Beginning was the Void”, and then elements were created,
fully propertied and distinguished from one another, until finally reaching all the
elements of the universe set U.

• Partition creation story: “In the Beginning was Undifferentiated Substance (e.g., “Form-
less Chaos”), and then there was a “Big Bang” where the substance is was objectively
informed by the making of distinctions (i.e., symmetry-breaking) until the final result
was the fully distinguished (i.e., the equivalence classes are singletons) elements of
the universe U.

2.4. Logical Entropy
2.4.1. A Little History of Information-as-Distinctions

When the logic of partitions was developed [3],it could imitate Boole’s development
of logical probability as the quantitative version of subsets [5]. Logical probability was the
number of elements in a subset |S|

|U| normalized by the cardinality of U. The dual to the
notion of an element of a subset is a distinction of a partition.

Gregory Bateson, an eclectic anthropologist, said that information is “differences that
make a difference.” [16] (p. 99). Charles Bennett, a founder of quantum information theory,
described information as “the notion of distinguishability abstracted away from what we
are distinguishing, or from the carrier of information. . . ” [17] (p. 155).

But the notion of information as the quantification of distinctions or differences goes
back almost four centuries. In The Information: A History, A Theory, A Flood by James Gleick,
he noted the focus on distinctions or differences in the work of John Wilkins, a 17th-century
polymath and founder of the Royal Society. In the year before Newton was born (1641),
Wilkins published one of the earliest books on cryptography, Mercury or the Secret and Swift
Messenger. Moreover, he pointed out the fundamental role of differences and noted that
any (finite) set of different things could be encoded by words in a binary code.

For in the general we must note, that whatever is capable of a competent
difference, perceptible to any sense, may be a sufficient means whereby to
express the cogitations. It is more convenient, indeed, that these differences
should be of as great variety as the letters of the alphabet; but it is sufficient if
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they be but twofold, because two alone may, with somewhat more labour and
time, be well enough contrived to express all the rest. [18] (p. 67)

Wilkins explains that a five-letter binary code would be sufficient to code the letters of the
alphabet since 25 = 32.

Thus any two letters or numbers, suppose A. B. being transposed through five
places, will yield thirty-two differences, and so consequently will superabun-
dantly serve for the four and twenty letters,. . . . [18] (pp. 67-68)

Gleick dates modern information theory from Claude Shannon’s work published in
1948 [19]:

Any difference meant a binary choice. Any binary choice began the expressing 
of cogitations. Here, in this arcane and anonymous treatise of 1641, the essential 
idea of information theory poked to the surface of human thought, saw its 
shadow, and disappeared again for [three] hundred years. [20] (p. 161) [an old 
Pennsylvania Dutch superstition is that if on the second of February each year, 
a groundhog emerges from its den and sees its shadow, then it stays in its den 
for another six weeks].

2.4.2. The Mathematics of Logical Entropy

We have seen how probability theory starts with the notion of the logical probability
of a subset (or event) as the normalized number of elements in the subset S:

Pr(S) = |S|
|U| .

We have also seen the duality between subsets and partitions expressed as
Subsets

Probability ≈ Partitions
Information and Elements

Subsets ≈ Distinctions
Partitions

which also means that
Elements

Probability ≈ Distinctions
Information .

Hence, the logical notion of information in a partition should be the normalized
number of distinctions in the partition. Following Shannon’s labeling of his quantification
of information as “entropy”, we will call the notion based on quantifying the logic of
partitions as “logical entropy” ([21–23]). For a partition π = {B1, . . . , Bm}, the logical
entropy h(π) of π is the normalized number of distinctions:

h(π) = |dit(π)|
|U×U| = |U×U−indit(π)|

|U×U| = 1 −
∣∣∣∪m

j=1Bj×Bj

∣∣∣
|U×U| = 1 − ∑m

j=1

(
|Bj|
|U|

)2

= 1 − ∑m
j=1 Pr

(
Bj
)2

= ∑j ̸=k Pr
(

Bj
)

Pr(Bk) = 2 ∑j<k Pr
(

Bj
)

Pr(Bk)

where the product version of the formula follows from

1 =
(

∑m
j=1 Pr

(
Bj
))2

= ∑m
j=1 Pr

(
Bj
)2

+ 2 ∑j<k Pr
(

Bj
)

Pr(Bk).

As in the case of logical probability, we are, for the moment, assuming equiprobable
points in U. Moreover, it should be noted that for probability, we are dealing with single
samples, and for information, we are dealing with pairs, indeed, ordered pairs of elements
drawn from U, so that each pair of distinct blocks Bj and Bk are counted twice in the
sum ∑j ̸=k Pr

(
Bj
)

Pr(Bk). This yields an immediate simple interpretation of logical entropy,
namely, that h(π) is the probability that in two independent samples from U, one obtains a
distinction of π.

The formulas generalize immediately to the general case of finite probability the-
ory, where the points {u1, . . . , un} of U have the respective point probabilities of p =

(p1, . . . , pn). Then, Pr(S) = ∑ui∈S pi and
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h(π) = 1 − ∑m
j=1 Pr

(
Bj
)2

= ∑j ̸=k Pr
(

Bj
)

Pr(Bk) = 2 ∑j<k Pr
(

Bj
)

Pr(Bk)

when the given data is just the probability distribution p on U, then,

h(p) = 1 − ∑n
i=1 p2

i = ∑i ̸=k pi pk = 2 ∑i<k pi pk

which is the logical entropy of the discrete partition 1U , i.e., h(p) = h(1U). In all the cases,
the logical entropy is the two-sample probability of obtaining a distinction. The lowest
value of logical entropy is 0 for the indiscrete partition 0U or for p, where some pi = 1. The
maximum value for logical entropy is for the discrete partition with equiprobable points:

h(1U) = 1 − ∑n
i=1

(
1
n

)2
= 1 − n

n2 = 1 − 1
n

which is interpreted simply as the probability that the first draw is not repeated in the
second draw.

Diagrammatically, the logical entropy is illustrated using a box diagram with a unit
square. For instance, for p = (1/2.1/4.1/4), the box diagram is given in Figure 3, where
each of the halves is

h(p)/2 = ∑i<k pi pk = p1 p2 + p1 p3 + p2 p3 = 1
2

1
4 + 1

2
1
4 + 1

4
1
4 = 5

16 .

Figure 3. Logical entropy box diagram.

Logical entropy can be obtained as the value on a subset of a probability measure. The
probability measure is the product measure p × p on the set U × U, and the subset giving
the logical entropy is dit(π), i.e.,

h(π) = Pr(dit(π)) = p × p(dit(π)).

Since dit(π ∨ σ) = dit(π) ∪ dit(σ), h(π ∨ σ) = p × p(dit(π ∨ σ)), which is sometimes
written as h(π, σ) as the joint entropy. Even though there is no structure on U, a natural
closure operation on subsets S ⊆ U × U, is defined as the reflexive–symmetric–transitive
(RST) closure of S, which is the smallest indit set or equivalence relation containing S. Its
complementary ditset will define a partition. Although they are the complements of a set
under a closure operation, ditsets are not like the open sets in a topological space, and
the RST closure is not a topological closure operation. The arbitrary union of ditsets is
a ditset, but the intersection of ditsets is not necessarily a ditset (unlike open sets). But
that intersection is nevertheless a subset of U × U, so its probability measure defines the
mutual information: m(π, σ) = p × p(dit(π) ∩ dit(σ)). Similarly, the difference information is
h(π|σ) = p × p(dit(π)− dit(σ)), which is interpreted as the information in π that is not in
σ. Then, we have the usual Venn diagram relationships illustrated in Figure 4:
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h(π, σ) = h(π|σ) + m(π, σ) + h(σ|π).

Figure 4. Venn diagram relationships for logical entropy.

2.4.3. The Relationship with Shannon Entropy

The well-known Shannon entropy [19], H(p) = ∑n
i=1 pi log

(
1
pi

)
, is not defined as the

values of certain subsets of a measure on a set. Shannon defined his notions of joint, mutual,
and difference or conditional entropy directly in terms of probabilities and defined them so
that the Venn diagrams relationships nevertheless held.

Andrei Kolmogorov objected to Shannon defining information directly in terms of
probabilities and instead thought it should be based on a prior combinatorial structure.

Information theory must precede probability theory, and not be based on it. By
the very essence of this discipline, the foundations of information theory have a
finite combinatorial character. [24] (p. 39)

Kolmogorov had his own ideas, but it might be noticed that the logical entropy definition
of information-as-distinctions is based on probability-free sets of a combinatorial nature,
namely, ditsets.

The fact that the compound notions of Shannon entropy satisfy the Venn diagram
relations, in spite of not being defined as a measure in the sense of measure theory, is
explained by the fact that logical entropy is defined as a measure and there is a uniform
transformation between the compound logical entropy and Shannon entropy formulas
that preserves Venn diagrams. This raises the question of that relationship between the
two entropies.

If an outcome has probability close to or equal to 1, then the occurrence of that
outcome intuitively gives little or no information. Therefore, it might be said that
information is related to the complement of 1—but there are two 1-complements, the
additive 1-complement 1 − pi and the multiplicative 1-complement 1

pi
. The additive

and multiplicative averages of the respective 1-complements give the two entropies.
The logical entropy ∑n

i=1 pi(1 − pi) = h(p) is obtained as the additive probabilistic av-
erage of the additive 1-complements. The Shannon entropy in its log-free or anti-

log form, ∏n
i=1

(
1
pi

)pi
= log−1(H(p)), is obtained as the multiplicative average of

the multiplicative 1-complements. The particular log is chosen for the context, e.g.,

H(p) = log2

(
∏n

i=1

(
1
pi

)pi
)
= ∑n

i=1 pi log2

(
1
pi

)
for coding theory or natural logs for sta-

tistical mechanics. Since the log of the multiplicative average transforms it to an additive
average, the two additive averages can be transformed, one into the other, by the dit-bit
transform 1 − pi ⇝ log

(
1
pi

)
. Once the compound formulas are expressed in terms of the



Axioms 2025, 14, 466 9 of 13

additive 1-complements, then this non-linear but monotonic dit-bit transform yields the
corresponding compound formulas for Shannon entropy [21]. And the dit-bit transform
preserves Venn diagrams.

2.4.4. Some History of the Logical Entropy Formula

The derivation of logical entropy as the quantitative version of the new partition logic
is new, but the formula itself goes back at least to 1912 in the index of mutability of Corrado
Gini [25]. The formula resurfaced in the code-breaking activity in World War II [26,27]
where it was the additive 1-complement of Alan Turing’s repeat rate ∑n

i=1 p2
i , where it

became part of the mathematics of cryptography [28]. After the war, Edmund Simpson
published the formula as a quantification of biodiversity [29]. Hence, the formula is often
known as the Gini–Simpson formula for biodiversity [30]. But Simpson and I. J. Good
worked with Turing at Bletchley Park during the Second World War, and, according to
Good, “E. H. Simpson and I both obtained the notion [the repeat rate] from Turing” [26]
(p. 395). In 1948, when Simpson published the index, he did not acknowledge Turing,
“fearing that to acknowledge him would be regarded as a breach of security” [31] (p. 562).

Gini [25] introduced dij as the “logical distance” between the ith and jth elements
where dij = 1 for i ̸= j and dii = 0, i.e., dij = 1 − δij, the 1-complement to the Kronecker
delta. Since 1 = (p1 + . . . + pn)(p1 + . . . + pn) = ∑i p2

i + ∑i ̸=j pi pj, the logical entropy, i.e.,
Gini’s index of mutability, h(p) = 1 − ∑i p2

i = ∑i ̸=j pi pj, is the average logical distance
between a pair of independently drawn elements. C. R. (Calyampudi Radhakrishna) Rao
in 1982 generalized this by allowing other non-negative distances dij = dji for i ̸= j (but
always dii = 0) between the elements of U so that Q = ∑i,j dij pi pj would be the average
distance between a pair of independently drawn elements from U, which was known as
quadratic entropy [32].

3. Results: The Logical Basis for Variance and Covariance
At the logical level, the fundamental duality starts with the duality between elements

(“Its”) of a subset and distinctions (“Dits”) of a partition. The elements of a subsets are
certain singular elements from the universe set, and the distinctions of a partition are certain
pairs (or ordered pairs) of elements of the universe set:

• Given an element, the natural questions are “to be or not to be” in a subset, or existence
versus non-existence, the questions of the Boolean logic of subsets.

• Given a pair of elements, the natural questions are identity or difference, distinct or
indistinct, or equivalent or in-equivalent, the questions of the logic of partitions (or
equivalence relations).

Given U = {u1, . . . , un} with the probability distribution p = (p1, . . . , pn), consider
a real-valued random variable (r.v.) X : U → R. The inverse-image defines a parti-
tion X−1 =

{
X−1(xj

)}
xj∈X(U)

on U, where the values in the image X(U) of the r.v. are

x1, . . . , xm. Then each value has the probability Pr
(
X = xj

)
= Pr

(
xj
)
= ∑ui∈X−1(xj)

pi.
On the one (single-value) side of the duality, the probability average of the single

values is the usual mean: µX = E(X) = ∑m
j=1 Pr

(
xj
)
xj. But what is the appropriate notion

on the other (pair-of-values) side of the duality?
In the same 1912 book [25] where Gini suggested the index of the mutability ∑i ̸=k pi pk

of a probability distribution, he suggested the mean difference ∑j ̸=k Pr
(
xj
)

Pr(xk)
∣∣xj − xk

∣∣.
Maurice Kendall noted that the mean difference “has a certain theoretical attraction, being
dependent on the spread of the variate-values among themselves and not on the deviations
from some central value” [8] (p. 42). But Kendall went on to note: “It is, however, more
difficult to compute than the standard deviation, and the appearance of the absolute values
in the defining equations indicates, as for the mean deviation, the appearance of difficulties
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in the theory of sampling” [8] (p. 42). At a later date, Kendall summarized his criticism; the
mean difference (in comparison to the variance) lacked “ease of calculation, mathematical
tractability and sampling simplicity” [33] (p. 223).

Kendall noted that if one tried to improve the mean difference formula by using the
square of the difference in values, then that “is nothing but twice the variance” [8] (p. 42) since

∑j ̸=k Pr
(

xj
)

Pr(xk)
(
xj − xk

)2
= ∑j,k Pr

(
xj
)

Pr(xk)
[

x2
j − 2xjxk + x2

k

]
= ∑m

j=1 Pr
(
xj
)
x2

j − 2
(

∑m
j−1 Pr

(
xj
)
xj

)
(∑m

k=1 Pr(xk)xk) + ∑m
k=1 Pr(xk)x2

k

= 2E
(
X2)− 2E(X)2 = 2Var(X).

Kendall further pointed out:

This interesting relation shows that the variance may in fact be defined as
half the mean square of all possible variate differences, that is to say, without
reference to deviations from a central value, the mean. [8] (p. 42)

This means that C. R. Rao’s quadratic entropy for the distance function djk =
(
xj − xk

)2 is
twice the variance. We noted previously that the consideration of pairs could take the form
of just pairs

{
xj, xk

}
or ordered pairs

(
xj, xk

)
(where j ̸= k). Hence, the variance may be

defined using just simple pairs:

Var(X) = ∑j<k Pr
(
xj
)

Pr(xk)
(
xj − xk

)2

The “interesting relation” also extends to the covariance. Suppose there are two
random variables X with values xi for i = 1, . . . , n and Y with values yj for j = 1, . . . , m
with probabilities given by a joint distribution p

(
xi, yj

)
: X × Y → R. The two-samples

or two-draws methodology gives two ordered pairs
(
xi, yj

)
and

(
xi′ , yj′

)
, so the double-

variance formula ∑j ̸=k Pr
(

xj
)

Pr(xk)
(
xj − xk

)2 generalizes to

∑(i,j) ̸=(i′ ,j′) p
(
xi, yj

)
p
(

xi′ , yj′
)
(xi − xi′)

(
yj − yj′

)
which is similarly equal to twice the covariance Cov(X, Y) = E(XY)− E(X)E(Y).

Since (xi − xi′)
(

yj − yj′
)
= 0 if i = i′ or j = j′, we can sum over all i, j. Abbreviating

p
(

xi, yj
)
= pij, we have

∑i,j,i′ ,j′ pij pi′ j′(xi − xi′)
(

yj − yj′
)
= ∑i,j,i′ ,j′ pij pi′ j′

[
xiyj − xiyj′ − xi′yj + xi′yj′

]
= ∑i,j,i′ ,j′ pij pi′ j′xiyj − ∑i,j,i′ ,j′ pij pi′ j′xiyj′ − ∑i,j,i′ ,j′ pij pi′ j′xi′yj + ∑i,j,i′ ,j′ pij pi′ j′xi′yj′ .

Then, using

∑i,j,i′ ,j′ pij pi′ j′xiyj = ∑i,j pijxiyj ∑i′ ,j′ pi′ j′ = ∑ij pijxiyj = E(XY), and
∑i,j,i′ ,j′ pij pi′ j′xiyj′ = ∑i,j′ xiyj′ ∑i′ ∑j pij pi′ j′ = ∑i,j′ xiyj′ ∑i′ pi pi′ j′

= ∑i,j/ pixiyj′ pj′ = (∑i pixi)
(

∑j′ pj′yj′
)
= E(X)E(Y)

and similarly for the other cases, we have

∑(i,j) ̸=(i′ ,j′) p
(

xi, yj
)

p
(

xi′ , yj′
)
(xi − xi′)

(
yj − yj′

)
= E(XY)− E(X)E(Y)− E(Y)E(X) + E(XY) = 2Cov(X, Y).

Using the lexicographical ordering of the ordered pairs of indices (i.e., ordering
according to first index, or if i = i′, then according to the second index), we have

∑(i,j)<(i′ ,j′) p
(
xi, yj

)
p
(

xi′ , yj′
)
(xi − xi′)

(
yj − yj′

)
= Cov(X, Y).
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4. Discussion
These results shed new light on the variance in terms of the fundamental duality that

starts with the two dual logics of subsets and partitions, and extends throughout the exact
sciences [4]. The aspects discussed in this paper are given in Table 2.

Table 2. Parts of the fundamental duality discussed here.

Fundamental Duality Subset or Element Side Partition or Distinction Side

Its & Dits Elements of subsets Distinctions of partitions

Logic Subset logic ℘(U) Partition logic Π(U)

“Creation stories” Ex Nihilo ∅ ⊆ U Big Bang 1 ∼= 0U ≾ 1U ∼= U

Quantitative versions Probability ∑ui∈S pi
Logical entropy
∑(uj ,uk)∈dit(π) pj pk

Sampling 1-draw 2-draw (with replacement)

Random variable X Mean ∑i pixi = E(X)
Variance

∑j<k pj pk

(
xj − xk

)2
= Var(X)

The key point in Table 2 is that in terms of the subsets–partitions duality, the notions
of mean and variance are dual concepts. Perhaps a better understanding of this would be to
consider some of the recent literature developing notions of “logical entropy” motivated
ultimately by the notion of a fuzzy set [34] or a subspace and the related algebras, e.g.,
fuzzy algebras, quantum logics, MV algebras, effect algebras, and D-posets ([35–43]).

The striking thing about all these developments is that their origin is on the subset side
of the subsets–partitions duality in spite of the formulas called “logical entropy.” Subsets
linearize to subspaces, so the Birkhoff-von-Neumann-type quantum logics [44] are just
the vector (Hilbert) space versions of the logic of subsets. Partitions, in turn, linearize to
direct-sum decompositions (DSDs) of vector spaces so the quantum logic on the partition
side of the duality would be the logic of DSDs of Hilbert spaces [45].

A subset of U is determined by its characteristic function χ : U → {0, 1} and a
fuzzy subset of U is just the extension to allow for a continuum of membership values
f : U → [0, 1] in the unit interval, so it is clearly on the subset side of the duality.

Logical entropy is properly defined as the quantification of the logic of partitions by
the normalized cardinality of the ditset of a partition, where a dit is an ordered pair of
elements in different blocks (or equivalence classes). As Kolmogorov emphasized [24],
information should be definable without reference to probabilities, e.g., the ditset definition
of information-as-distinctions [21]. When a probability distribution is defined on the
points of U, then logical entropy as a probability measure is the product measure of the
ditset. When the partition is the discrete partition 1U , then the logical entropy is defined
using only the probability distribution as h(p) = Σi pi(1 − pi). That is how the “logical
entropy” formulas are defined in the aforementioned algebras all developed from concepts
on the subset side of the duality, e.g., fuzzy subsets. Those formulas using probability-like
concepts in those algebras may or may not have useful properties but they do not derive
from the information (as distinctions) theory side of the subsets–partitions duality.

A fuzzy subset has been described as “non-sharp, non-crisp, and smudged” [34] (p. 7),
which are all adjectives used to describe the key non-classical notion in quantum mechanics,
namely a superposition state. But it would nevertheless be a mistake to try to model a
superposition state as a fuzzy subset. A fuzzy subset is “fuzzy” about which elements of
the universe set are in the subset, but it is clear which eigenvectors in an orthonormal basis
of an observable are in a superposition state (namely those with non-zero coefficients). The
superposition wipes away (or abstracts from) the distinctions between the eigenvectors in
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the superposition and those indistinctions, called “quantum coherences” [46] (p. 177) in
quantum mechanics, are modeled by an equivalence class in an equivalence relation, i.e., a
block in a partition [4].

5. Conclusions
We see the one-draw methodology in the notion of the probability of a subset (the

one-draw-from-U probability of obtaining an element of a subset S) and the two-draw
methodology in the notion of the logical entropy of a partition (the two-draw-from-U
probability of obtaining a distinction of a partition π). Applied to a random variable
X : U → R, the one-draw method gives the mean, and the two-draw method gives
the variance.

The quantitative versions of the two logics associates the one-draw method with
probability theory and the two-draw method with information theory—which implies that
the variance should be seen as an information-theoretic concept, as seen in Table 2. Indeed,
if we use the logical distance function 1 − δjk squared instead of the Euclidean distance

squared, then that “logical variance” is the logical entropy, i.e., ∑n
j,k=1 pj pk

(
1 − δjk

)2
= h(p).

The usual definition of the variance Var(X) = E
[
(X − E(X))2

]
gives no hint of the two-

draw approach.
In terms of the element–distinction (or subsets–partitions) duality, the one-draw ex-

pectation of the value of an element xi is its mean, and the two-draw expectation of the
value of a distinction xi − xk squared is the variance (and similarly for the covariance). This
is the new logical basis for the variance that positions it as dual to the mean (Table 2) and on
the partitions/information theory side of the fundamental subsets–partitions duality.
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