
The basic ideas of quantum mechanics

David Ellerman

Independent researcher, Ljubljana, Slovenia,
https://orcid.org/0000-0002-5718-618X.

Contributing authors: david@ellerman.org;

Abstract

For a century, quantum theorists have been reading the mathematical entrails of
quantum mechanics (QM) to divine the nature of quantum reality. But to little
avail. In this paper a different approach is taken, namely to identify and explain
the basic intuitive ideas involved in QM. This does not tell one how those basic
‘gears’ all mesh together in the beautiful mathematics of QM. But this does give
one some intuitive (anschaulich)) ideas about the quantum reality described in
the seemingly hard-to-interpret mathematical framework.
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1 Introduction: A new approach

For a century, quantum theorists have been reading the mathematical entrails of quan-
tum mechanics (QM) to divine the nature of quantum reality. But to little avail. That
problem of a realistic interpretation of quantum mechanics has become an open scan-
dal [57]. New so-called “interpretations” are created all the time and no matter how
bizarre, none are definitively abandoned in the “demolition derby” of interpretations.
The usual circular conversation in the philosophy of quantum mechanics [e.g., [48];
[47]] typically considers the Copenhagen interpretation associated with Niels Bohr
[25], together with the realistic or ontic interpretations of Bohmian mechanics [13],
spontaneous localization [31], or many-worlds [59]. There is not even wide agreement
on what constitutes an “interpretation” or how it should be constituted.

A new approach is needed. This paper focuses on giving the basic ideas needed to
understand (standard von Neumann-Dirac) QM, not on how they connect together in
the full-blown mathematics. That seems a reasonable place to start.

2 The basic idea of superposition

2.1 Superposition as the flip-side of abstraction

A glass half-full and a glass half-empty are the same thing viewed from different
perspectives. Abstraction and superposition have that relationship ([17]; [2]). Given a
set of entities with some similarities and some differences, the process of abstraction
“abstracts away from the differences” to focus on the similarities. The “abstraction” is
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definite on the similarities and indefinite on the differences. In Figure 1, we have two
similar isosceles triangles with labeled edges and angles. The process of abstraction to
see only the similarities can also be seen as the process of superposition by rendering
the triangles indefinite on their differences. This quantum superposition might be
symbolized as: definite + definite = indefinite, or, in more detail, superposition of
similarities = definite on the one hand, and superposition of differences = indefinite
on the other hand.

Fig. 1 Superposition of two differently labeled isosceles triangles is indefinite where they differ

A very common misunderstanding is to see quantum superposition (ontologically)
as being like the classical superposition of waves like water, sound, or electromagnetic
waves. The math is the same, but the interpretation should be different. The addition
of two classical waves is just as definite or well-defined as the summand waves–as
illustrated in Figure 2.

Fig. 2 Classical superposition as definite + definite = definite

That classical notion of superposition is very different from superposition seen as
the flip-side of abstraction where the superposition is indefinite, e.g., indefinite between
going through the two-slits in the double-slit experiment or or going through the two
arms in an interferometer [5, 18].
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Such analogies have led to the name “Wave Mechanics” being sometimes
given to quantum mechanics. It is important to remember, however, that the
superposition that occurs in quantum mechanics is of an essentially different
nature from any occurring in the classical theory, as is shown by the fact that
the quantum superposition principle demands indeterminacy in the results
of observations in order to be capable of a sensible physical interpretation.
The analogies are thus liable to be misleading. [11, 14]

The math is the same in the two cases of classical and quantum superposition, i.e.,
vector addition, but the interpretation in the two cases is very different. The complex
numbers are the natural math to describe waves since the polar representation of a
complex number is an amplitude and a phase. But that does not mean that the wave
function is a physical wave. The reality that is described is that of superposition as
indefiniteness in the states of quantum particles. R.I.G. Hughes referred to quantum
indefiniteness as “latency.”

The wave formalism offers a convenient mathematical representation of this
latency, for not only can the mathematics of wave effects, like interference
and diffraction, be expressed in terms of the addition of vectors (that is,
their linear superposition; see [27, chap. 29-5], but the converse, also holds.
[35, 303]

That is, the math of vector addition to describe quantum superposition as indefi-
niteness can always be seen in terms of classical wave effects such as interference. The
wave math of classical superposition thus tracks (i.e., also describes) the quantum
notion of superposition as indefiniteness. The math of classical wave motion (e.g., the
ripple tank model of the two-slit experiment using classical water waves) also describes
the math of evolution of quantum particles in superposition or indefinite states (see
Figure 11 which illustrates this point in the context of the two-slit experiment).

The huge payoff from interpreting quantum superposition as creating indistinc-
tions, i.e., rendering differences as indistinct (as in Figure 1), is that we can see that
the opposite process of creating distinctions is state reduction (see later section), i.e.,

superposition = making indistinctions;
state reduction = making distinctions.

With only the classical notion of superposition, state reduction (“collapse of the wave
function”) appears as a mystery (the so-called ”measurement problem”) rather than
just the inverse of quantum superposition.
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2.2 Superposition accounts for quantum amplitudes and the
Born rule

2.2.1 Superposition events in probability theory

There is some agreement, starting at least with Paul Dirac [11, Chapter I], that the
idea of superposition is the key non-classical notion in QM. Since the superposition
of quantum states is another quantum state, i.e., the linear combination of quantum
states is a quantum state, the idea of superposition is responsible for the quantum
states forming a linear vector space. Since our goal is conceptual understanding, not
mathematical generality, we stick to the finite-dimensional case. As Hermann Weyl put
it “no essential features of quantum mechanics are lost by using the finite-dimensional
model.” [60, 257]

When a normalized quantum state vector is expressed in the basis of eigenvectors
(eigenstates) of an observable, then the Born rule states that absolute square of the
coefficients is the probability of an eigenstate being the result of a measurement of
that state by that observable. Steven Weinberg asked: “Where does the Born rule
come from?” [62, 92] To answer that question, we might go back to a suggestion of
Gian-Carlo Rota; “I will lay my cards on the table: a revision of the notion of a sample
space is my ultimate concern.” [50, 57]

Behind the Feynman integral there lurks an even more enticing (and even
less rigorous) concept: that of an amplitude which is meant to be the
quantum-mechanical analog of probability (one gets probabilities by tak-
ing the absolute values of amplitudes and squaring them: hence the slogan
“quantum mechanics is the imaginary square root of probability theory”). A
concept similar to that of a sample space should be brought into existence
for amplitudes and quantum mechanics should be developed starting from
this concept. [49, 229]

Hence we start with the ordinary notion in finite probability theory of a sam-
ple space U with outcomes u1, ..., un which we initially assume are equiprobable. An
event is a subset S ⊆ U of outcomes. The subset S and the whole set U have no
structure connecting the outcomes. The simplest possible idea for Rota’s “ revision”
is to postulate a new type of event, a superposition event, symbolized ΣS, where the
outcomes are “superposed” instead of having unrelated outcomes as in the classical
discrete event S. And the simplest possible assumption about the probabilities is to
assume they are unchanged, i.e., Pr (ui|ΣS) := Pr (ui|S). At first this looks like a
bug but it is a feature since the same thing occurs in QM where the probabilities for
eigenstate outcomes in the superposition state are the same as the probabilities in the
corresponding complete decomposed mixed state [5, 176]. Those two states can only
be differentiated by a measurement in another basis.

2.2.2 Superposition and relation matrices

How can S and ΣS be differently represented in the same basis? An n × 1 column
vector |S⟩ of 0, 1-entries to represent which outcomes are in the support of the event
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S or ΣS, or even a similar vector of probabilities, will not do the job since they are
the same for both S and ΣS.

One must move to an n× n matrix to represent the difference. We can begin with
the simplest case of 0, 1-matrices to represent the differences. A binary relation R
on U is a subset R ⊆ U × U. The relation can be represented by an n × n relation
matrix (also called incidence matrix ) Rel (R) where Rel (R)jk = 1 if (uj , uk) ∈ R,
else 0. Let ∆S ⊆ U × U be the set of self-pairs of elements in S, i.e., the diagonal
∆S = {(ui, ui) |ui ∈ S}. Then the ordinary discrete event S is represented by the diag-
onal matrix Rel (∆S) with the diagonal being the values of the characteristic function
χS : U → {0, 1}, i.e., χS (ui) = 1 if ui ∈ S, else 0. In contrast the superposition event
ΣS is represented by Rel (S × S) so that Rel (S × S)jk = 1 if uj , uk ∈ S, else 0. Intu-
itively, in the superposition event ΣS, the elements of S are rendered indefinite on
their differences which has been described as them being blurred, blobbed, smeared,
or cohered together. This cohering together of superposed outcomes is then repre-
sented by the non-zero off-diagonal elements of Rel (S × S). The difference between
the two matrices Rel (∆S) and Rel (S × S) is in those non-zero off-diagonal elements.
Even though we are only dealing (at first) with 0, 1-matrices, we can already see the
foreshadowing of how superposition is responsible for the non-classical aspects of QM.

For this reason, the off-diagonal terms of a density matrix ... are often called
“quantum coherences” because they are responsible for the interference
effects typical of quantum mechanics that are absent in classical dynamics.
[5, 177]

The ‘waste case’ of superposition is when S is a singleton event and accordingly in
that case, Rel (∆S) = Rel (S × S) so we will only speak of a “superposition event”
ΣS when |S| ≥ 2.

Two new phenomena appear in the matrix representation Rel (S × S) of a superpo-
sition event. One is the non-zero off-diagonal entries representing the cohering together
of the outcomes in the superposition event ΣS. The other new result is that only
Rel (S × S) can be obtained as the outer (or external) product or “square” of the
”square root” support 0, 1-vector |S⟩ and its transpose |S⟩t, i.e.,

|S⟩ |S⟩t = Rel (S × S).

If we represent the jth component of |S⟩ by ⟨uj |S⟩, then Rel (S × S)jk = ⟨uj |S⟩ ⟨uk|S⟩.
This is a very important result since it shows how, in an ultra-simple matrix repre-
sentation of superposition, the “square root” vector |S⟩ appears that foreshadows the
vector of quantum amplitudes in QM. And even the Born rule is foreshadowed in the
fact that: ⟨ui|S⟩2 = Rel (S × S)ii.

2.2.3 Superposition and density matrices

Dividing the relation matrices Rel (∆S) and Rel (S × S) through by their trace (sum
of diagonal elements) turns them into density matrices [61] that represent quantum
states:
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ρ (ΣS) = Rel(S×S)
tr[Rel(S×S)] and ρ (∆S) =

Rel(∆S)
tr[Rel(∆S)] .

They are density matrices for the equiprobable case obtained by dividing through by
tr [Rel (S × S)] = tr [Rel (∆S)] = |S| so that:

Pr (ui|ΣS) := Pr (ui|S) = 1
|S| if ui ∈ S, else 0.

The density matrix ρ (ΣS) is idempotent, i.e.,

ρ (ΣS)
2
= 1

|S| Rel (S × S)Rel (S × S) 1
|S| =

1
|S| |S⟩ |S⟩

t |S⟩ |S⟩t 1
|S| =

1
|S| |S⟩ |S| |S⟩

t 1
|S| =

1
|S| Rel (S × S) = ρ (ΣS).

Hence it is a density matrix ρ that is called a pure state in QM, i.e., where ρ2 = ρ,
while ρ (∆S) (|S| ≥ 2) is what is called a mixed state.

For example, suppose U = {a, b, c} and S = {a, c} with equiprobable outcomes.
Then we have:

Rel (∆S) =

1 0 0
0 0 0
0 0 1

and Rel (S × S) =

1 0 1
0 0 0
1 0 1

.
Dividing through by |S| = 2 gives:

ρ (∆S) =

1
2 0 0
0 0 0
0 0 1

2

 and ρ (ΣS) =

1
2 0 1

2
0 0 0
1
2 0 1

2


as well as:

ρ (ΣS)
2
=

1
2 0 1

2
0 0 0
1
2 0 1

2

2

=

1
2 0 1

2
0 0 0
1
2 0 1

2

 = ρ (ΣS).

The diagonal entries in any density matrix are non-negative reals that sum to one
like probabilities. The eigenvalues of a diagonal matrix like ρ (∆S) are its diagonal
entries. But the eigenvalues of a pure state density matrix like ρ (ΣS) are one with
the value of 1 with the rest being zeros. Hence for any pure state ρ2 = ρ in QM, there
is a normalized eigenvector |s⟩ corresponding to the eigenvalue of 1 so the spectral
decomposition of ρ as the sum of eigenvalues times the projectors to the eigenstates is:
ρ = |s⟩ ⟨s| so that ρ is again obtained as an outer (or external) product or “square” of
a “square root” vector |s⟩ times its (conjugate) transpose. In the case of our example,
the normalized eigenvector corresponding to the eigenvalue of 1 for ρ (ΣS) is (up to

sign) |s⟩ =
[

1√
2
, 0, 1√

2

]t
so that:
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|s⟩ |s⟩t =

 1√
2

0
1√
2

[
1√
2
, 0, 1√

2

]
=

1
2 0 1

2
0 0 0
1
2 0 1

2

 = ρ (ΣS).

The new item that appears for pure state density matrices ρ is this state vector
|s⟩ (corresponding to the eigenvalue of 1) such that ρ = |s⟩ |s⟩t = |s⟩ ⟨s| (writing |s⟩t
as ⟨s| in the Dirac notation). And, as in the example, the product of each entry in
|s⟩ with corresponding entry in the (conjugate) transpose is the diagonal entry in the

density matrix, e.g., ⟨a|s⟩2 = 1
2 = ⟨c|s⟩2 and ⟨b|s⟩2 = 0 in the example, which in

general is the Born rule.
Thus what we have derived starting with only the notion of a superposition event

ΣS in an extended probability theory smoothly generalizes to the general case in QM
where transpose is the conjugate transpose and where the square ⟨ui|s⟩2 is the absolute
value squared |⟨ui|s⟩|2. The claim is that this basic idea of a superposition event ΣS
leads by this natural logical progression to the notion of quantum amplitudes |s⟩ (or
“square roots”) and the Born rule Pr (ui|s) = |⟨ui|s⟩|2.

Of course, in the context of the full mathematics of QM, there can be many so-
called “derivations” of the Born rule [56], not to mention the mathematics of the
Gleason Theorem [32]. But such elegant and sophisticated results do not really answer
Weinberg’s question: “Where does the Born rule come from?”. Our approach here is
different, namely to give the basic idea behind the Born rule. And we have argued that
the Born rule and quantum amplitudes (whose absolute squares give the probabilities)
are natural consequences of just introducing the notion of a superposition event into
probability theory [23].

There are a few other aspects that might be noted. The notion of “support” records
only the information about a scalar as to whether it is non-zero or zero. Given a state
vector |ψ⟩ =

∑n
i=1 αi |ui⟩, the support set is the set of basic vectors with non-zero

coefficients: supp (|ψ⟩) = {|ui⟩ |αi ̸= 0}, the support vector |supp (|ψ⟩)⟩ is the vector
where the components ⟨ui|ψ⟩ are replaced by their supports, i.e., ⟨ui |supp (|ψ⟩)⟩ = 1
if ⟨ui|ψ⟩ ≠ 0, else 0, and the support matrix of a matrix replaces its entries by their
supports: supp (ρ)jk = 1 if ρjk ̸= 0, else 0. Then it is an easy result for any pure state
density matrix ρ = |s⟩ ⟨s| in QM that:

supp (ρ) = Rel (supp (|s⟩)× supp (|s⟩)).

which verifies our description of the superposition event ΣS as Rel(S × S). In other
words, the pattern of non-zero entries in any pure state density matrix in QM is S×S
for some subset S of the basis set in which the matrix is represented. This results
follows from the fact that in any (algebraic) field from Z2 to C, the product of two
scalars ⟨uj |s⟩ and ⟨uk|s⟩ is non-zero if and only if (iff) both scalars are non-zero.

A non-trivial question is the interpretation of the state vectors |s⟩ that give the
corresponding pure state density matrices ρ = |s⟩ ⟨s|. Many interpretations of QM
take the state vectors, e.g., wave functions, as ontological entities, rather than just
a computational devices to compute the probability amplitude and probabilities (via
the Born rule) of possible measurement outcomes. A classical discrete event and a
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superposition event are not ontological entities. They are simply a mathematical part
of the extended probability theory to indicate the possible or potential outcomes. We
have derived the quantum amplitudes starting only with the notion of a superposition
event with no ontological assumptions.

Moreover, if the “Schrödinger wave” is an ontic wave, then it is very unclear why
the absolute squares should be probabilities rather than some notion of intensity.
But our derivation shows how the “square root” state vectors |s⟩ arise out of adding
superposition events to probability theory so the probabilistic interpretation is there
from the beginning.

There is another argument, that might be mentioned, as to why the “ Schrödinger
wave” is not a description of an ontic wave. In William Rowan Hamilton’s optico-
mechanical formulation of classical particle mechanics, the mathematics of waves
appears [9, Sec. 7.9]. There is even a classical form of “wave-particle duality.” “Both
optical and mechanical phenomena can be described in wave terms as well as in parti-
cle terms.” [41, 276] Certainly no one interpreted this mathematical artifact of waves
as representing ontic waves in classical particle mechanics. But Schrödinger introduced
Planck’s constant h and reformulated the Hamilton-Jacobi equation over the complex
numbers to obtain his famous equation.

Schrödinger had in 1927 the original idea of going beyond the analogy
between geometrical optics and mechanics, established by Hamilton’s par-
tial differential equation, and changing over from the phase function ϕ to
the wave function ψ. [41, 279]

It is rather implausible to think, after these changes to obtain the Schrödinger
equation, that the wave mathematics would suddenly describe ontic waves instead of
the indefinite superposition states of quantum particles. And since Hamilton’s geo-
metrical mechanics is the classical limit as Planck’s constant h → 0, how would an
ontic wave mechanics turns into particle mechanics in the limit? In short, the wave
functions of QM are about the indefinite superposition states of quantum particles as
opposed to the fully definite states of classical particles; it is not about physical waves.

3 The basic math of indefiniteness and definiteness

3.1 The logic of partitions (or equivalence relations)

Abstracting away from the differences between to entities uj and uk means that they
are equivalent in what characteristics that remain. In other words, neglecting their
differences means they are now in the same equivalence class of some equivalence
relation. And equivalence relation E ⊆ U ×U is a reflexive, symmetric, and transitive
binary relation on U . Each element of U has an equivalence class of other elements
equivalent to it. Those equivalence classes are non-empty disjoint subsets of U that
cover all of U so they form a partition of U . Equivalence relations and partitions are
essentially the same concept but viewed from different perspectives, concepts that
Gian-Carlo Rota called “cyrptomorphic” [40, 153]. We will focus on the notion of a
partition.
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A partition π on U = {u1, ..., un} is a set of nonempty disjoint subsets π = {Bj}mj=1

whose union is all of U . A distinction or dit of π is an ordered pair (uj , uk) in different
blocks of π so let dit (π) ⊆ U ×U be the set of distinctions of π. Then an indistinction
or indit of π is an ordered pair of elements of U in the same block of π and indit (π) =
U × U − dit (π) is the equivalence relation associated with π.

The concepts of distinctions and indistinctions, distin-guishability and indistin-
guishability, and definiteness and indefiniteness are the key concepts, the ‘natural
language,’ of quantum mechanics. Partition logic is their logic. They are responsible
for the widespread belief that “information,” i.e., information-as-distinctions, plays a
basic role in QM. The role of those concept is quite explicit in the Feynman rules.

If several alternative subprocesses, indistinguishable within the given
physical arrangement, lead from the initial state to the final (registered)
result, then the amplitudes for all the indistinguishable processes must be
added to get the total amplitude for their combination (quantum law of
superposition of amplitudes).

If several distinguishable alternative processes lead from the initial prepa-
ration to the same final result, then the probabilities for all these processes
must be added to get the total probability for the final result (law of addition
of probabilities). [36, 110]

This ontic role of distinctions and indistinctions, i.e., information, is quite unknown
in the classical physics of fully definite particles.

If σ = {Cj′}m
′

j′=1 is another partition on U , then σ is refined by π, denoted σ ≾ π,
if for any block Bj ∈ π there is a block Cj′ ∈ σ containing it, i.e., Bj ⊆ Cj′ . The
refinement partial ordering can also be expressed as just the inclusion relation on
ditsets:

σ ≾ π iff dit (σ) ⊆ dit (π).

If Π (U) is the set of partitions on U , then refinement is a partial order on Π (U).
Moving upward in that partial order means making more distinctions. The top or
maximal partition of the partial order is the discrete partition 1U = {{ui}}ui∈U
where all the blocks are singletons. The bottom or minimal partition is the indiscrete
partition 0U = {U} whose only block is U . Since U is the only block in 0U , it has
no distinctions: dit (0U ) = ∅. The discrete partition makes all possible distinctions.
Since no element can be distinguished from itself, indit (1U ) = ∆ where diagonal ∆ is
∆ = {(ui, ui) |ui ∈ U} and dit (1U ) = U × U −∆.

The join of π and σ, denoted π ∨ σ, is the partition whose blocks are all the
nonempty intersections Bj ∩ Cj′ of the blocks of π and σ. The join is the least upper
bound of π and σ in the refinement partial order, and its ditset is: dit (π ∨ σ) =
dit (π) ∪ dit (σ). Then by DeMorgan’s law, its indit set is: indit (π ∨ σ) = indit (π) ∩
indit (σ), so the join of partitions corresponds to the intersection of the corresponding
equivalence relations. Since the intersection of two equivalence relations is always an
equivalence relation, the meet (greatest lower bound) of π and σ, denoted π∧σ, is the

10



partition whose corresponding equivalence relation is the smallest equivalence relation
containing indit (π)∪indit (σ). That join and meet operation on Π (U) make it a lattice
which was known in the 19th century (Dedekind and Schröder).

Figure 3 gives the lattice of partitions for U = {a, b, c} where refinement is indicated
by the lines between partitions.

Fig. 3 Partition lattice on U = {a, b, c}

The ditset of the partition π = {{a, b} , {c}} is dit (π) = {(a, c) , (b, c) , ...} where
the ellipsis stands for the reversed ordered pairs. The ditset of the discrete partition
1U is dit (1U ) = {(a, b) , (a, c) , (b, c) , ...} so in moving up the refinement partial order
from π to 1U , means distinguishing a from b in block or equivalence class {a, b}, i.e.,
making the distinctions {(a, b) , ...} = {(a, b) , (b, a)} = dit (1U )− dit (π).

Without at least the implication operation on partitions, the lattice of partitions
Π (U) is not properly called a “ logic.” When the implication operation (and other
logical operations) were defined (in the 21st century), then the logic of partitions could
be developed ([19]; [14]).

In category theory, there is the basic turn-around-arrows duality between sub-
sets (or subobjects or ‘parts’) and partitions (or quotient objects). “The dual notion
(obtained by reversing the arrows) of ‘part’ is the notion of partition.” [42, 85] This
duality is illustrated in Figure 4 where the image of a set-function f : X → Y is
subset f (X) ⊆ Y of the codomain Y and the coimage (or inverse-image) f−1 ={
f−1 (y)

}
y∈f(X)

is a partition on the domain X.

Since the usual logic is the Boolean logic of subsets (usually presented in the special
case of the logic of propositions), the logic of partitions is, in that sense, the dual
logic to Boolean logic [14]. We will eventually see that this basic duality is reflected in
the difference between classical mechanics and quantum mechanics [20]. This duality
comes out if we compare the Boolean lattice ℘ (U) and the partition lattice Π (U) by
considering what happens in terms of substance (or matter) and form [3] moving from
the bottom to the top of each lattice.
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Fig. 4 Duality between subsets and partitions illustrated with a function f : X → Y

The bottom of the Boolean lattice is the empty set ∅ and as we move up the lattice,
new substance is created in each subset until we reach the top U = {a, b, c}. Each
element in U is always fully formed. In the partition lattice, we see the opposite. At
the bottom is the indiscrete partition 0U = {U} = {{a, b, c}} so all the substance is
there but in a totally indefinite form with no distinctions. As we move up the lattice,
there is no new substance but the elements a, b, or c become more in-formed with
distinctions between the elements of U . Elsewhere we have argued that information is
distinctions ([18]; [24]). Hence moving up the Boolean lattice means new substance is
created but no new information (since the elements are always fully distinguished). In
the dual case, moving up the partition lattice means new information-as-distinctions is
created but no new substance. That illustration of the duality is pictured in Figure 5.

Fig. 5 Duality illustrated between the lattice of subsets and the lattice of partitions

3.2 Mapping a quantum system into a partition lattice using
support sets

Think of U as the basis set of orthonormal eigenvectors for some observable. The
support sets for quantum states can then be mapped into the partition lattice Π (U).
The blocks in the partitions (equivalence classes of equivalence relations) represent the
support sets of quantum states. In 0U , there is only one block U and it is the support
set of any (pure) quantum state that is a superposition of all the eigenstates–like what
we previously denoted as ΣU (since all the non-singleton subsets S appearing in Π (U)
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represent superpositions previously denoted ΣS). At the other extreme is 1U whose
blocks are all the singletons {ui} for ui ∈ U so 1U is the support set of the completely
decomposed mixed state–like what we previously described as the discrete classical
sample space U .

In between are the support sets for all the mixed states that could be obtained from
a superposition of all the eigenstates (modeled by 0U ) by the projective measurement
or state reduction by the observable, the operation which is mathematically described
by the Lüders mixture operation ([44]; [30]; [5, 279]). Those mixed states are special
since the supports of the states in the mixture are all disjoint, and that disjointness
is inherited from the disjointness of the eigenspaces of the observable via the Lüders
mixture operation representing projective measurement. And those disjoint supports
cover all of U since they result from projective measurement of 0U , so those mixed
state supports make up the partitions between the top and bottom of the partition
lattice.

For instance, the partition lattice Π ({a, b, c}) (Figure 3) represents the supports
of the possible states of the quantum system representing one quantum particle in the
three-dimensional Hilbert space C3. The striking thing is that the lattice of support
sets boils the possible quantum states of the particle down to show the clear sepa-
ration between the classical part 1U and all the other quantum states represented
by partitions with at least one non-singleton block representing the support set of
a superposition state. Thus the system can be represented like an iceberg [39, 7],
the above-water part being the classical mixed state 1U , and the below-water part
being all the states involving at least one non-classical (i.e., indefinite) state, i.e., a
superposition state, as illustrated in Figure 6.

Fig. 6 Iceberg picture of possible support states of a quantum system of one particle with three
eigenstates a, b, or c

The iceberg picture of the partition lattice matches up with the image of reality
divided into actuality (the classical part) and “ potentiality” (the quantum part) as
advocated by Werner Heisenberg [34], Abner Shimony [52], Gregg Jaeger [36], Diederik
Aerts [1], Ruth Kastner [38], Leonardo Chiatti [8], and many others.

Heisenberg [34, 53] used the term “potentiality” to characterize a property
which is objectively indefinite, whose value when actualized is a matter of
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objective chance, and which is assigned a definite probability by an algorithm
presupposing a definite mathematical structure of states and properties.
Potentiality is a modality that is somehow intermediate between actuality
and mere logical possibility. That properties can have this modality, and
that states of physical systems are characterized partially by the potential-
ities they determine and not just by the catalogue of properties to which
they assign definite values, are profound discoveries about the world, rather
than about human knowledge. [53, 6]

It is particularly important to see that moving upward in the partition lattice, e.g.,
from a quantum state (“potentiality”) to a classical state (actuality) means making
distinctions (since the refinement partial order on partitions is just inclusion of ditsets).
This is the process of emergence from the quantum world of indefiniteness into the
classical world of definiteness, e.g., as illustrated in the partition lattice of Figure 5.

Any non-philosophical quantum theorist who believes a superposition state of an
observable does not have a definite value prior to measurement has already implic-
itly acknowledged this quantum underworld of indefiniteness. The partition lattice of
indefinite support sets as partition blocks (below the top of classical states) thus only
adds some structure to what is commonly understood.

Heisenberg seems to have clothed his metaphysical speculations in discussions of
Greek philosophy and hence his use of Aristotle’s notion of “potentiality.” But Shimony
pointed out that this was not a felicitous choice of concepts.

The historical reference should perhaps be dismissed, since quantum mechan-
ical potentiality is completely devoid of teleological significance, which is
central to Aristotle’s conception. What it has in common with Aristotle’s
conception is the indefinite character of certain properties of the system. [52,
313-4]

Indeed, the notion of indefiniteness is already a sufficient description of the quantum
underworld to contrast with the classical concepts of full definiteness. Rather than
“actuality” and “potentiality” (or “ latency” [46]; [35]), reality divides into the quan-
tum world of indefiniteness from which, with distinctions, emerges into the classical
world of definiteness. The admission of this quantum underworld of indefiniteness is
the main ontological implication of our analysis.

The partition lattice Π (U) adds structure (simplified to the level of support sets)
to the iceberg picture. This is well-illustrated in the mapping of the two von Neumann
processes in the partition lattice for the two-slit experiment (see below).

The emergence from indefinite to less indefinite or fully definite in the partition
lattice matches up precisely with the case of state reduction in the Feynman rules [36,
110] due to making distinctions, i.e., distinguishing between the superposed alternative
paths. Moving upward from an indefinite state to a less indefinite or even a definite
state, i.e., refinement, in the partition lattice represents a state reduction–which in
unnecessarily anthropocentric terms is often called a “measurement” even though
there need be no human involvement or interaction with a macroscopic apparatus. A
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human measurement involves amplifying a quantum level state reduction to the level
of human observation but such technological considerations have no role in quantum
theory.

3.3 Join of partitions = partition lattice version of projective
measurement

Taking U as an orthonormal eigenbasis for an observable (i.e., a Hermitian or self-
adjoint operator), the operator assigns a real number to each eigenvector so it can
be described as a numerical attribute f : U → R. The inverse-image f−1 ={
f−1 (r)

}
r∈f(U)

is a partition on U and taking the state to be measured as a partition

π, then the result of the “projection-valued measurement” described by the Lüders
mixture operation is simply the join f−1∨π. The Lüders mixture operation is defined
in terms of projections and density matrices, but in the basic environment of the pow-
erset ℘ (U), a projection operator PS defined by a subset S ⊆ U takes any subset T to
S ∩ T , an idempotent operation. Hence the projection-valued measurement of “mixed
state” π = {B1, ..., Bm} by the “observable” represented by f−1 =

{
f−1 (r)

}
r∈f(U)

takes the blocks Bj of π to their projections f−1 (r) ∩ Bj , which are precisely the
blocks of the join f−1 ∨ π. The indefinite states represented by the Bj ’s are reduced
to the more definite states f−1 (r) ∩ Bj in the mixture f−1 ∨ π. The non-zero off-
diagonal elements in Rel (Bj ×Bj) and ρ (ΣBj) represent the pairs of elements in the
superposition state ΣBj (hereafter Bj means ΣBj unless indicated otherwise) that are
blobbed or cohered together like “quantum coherences” [5, 177]. The Lüders mixture
operation is an operation that transforms a density matrix, such as

ρ (π) =
∑
Bj∈π Pr (Bj) ρ (Bj)

into the post-measurement density matrix ρ̂(π). The non-zero entries in ρ (π) that are
zeroed in that operation ρ(π) → ρ̂(π), i.e., the pairs that are decohered in the join oper-
ation, are the pairs with different f -values. That is the basic idea of projection-valued
measurement; it distinguishes superposed (i.e., indefinite) states that have different
eigenvalues.

4 The pedagogical model of QM over (support) sets

4.1 The state space over Z2

A pedagogical (or ‘toy’) model of QM, called QM/Sets ([15]; [22]) , can be constructed
by working with support vectors instead of the full state vectors over the complex
numbers C. The support vectors have only 0, 1-components so they are vectors in
the vector space Zn2 over the field Z2 = {0, 1} where 1 + 1 = 0. Of course, a lot of
information is lost about the non-zero coefficients in a state vector |ψ⟩ =

∑n
i=1 αi |ui⟩,

but enough is retained to illustrate in a simple basic manner some of the paradoxical
aspects of QM (see the treatment of the two-slit experiment below).

Since a n-ary 0, 1-vector in Zn2 also defines a support subset S ⊆ U , the vectors
can also treated as subsets in the powerset ℘ (U). The addition of two 0, 1-vectors in
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Zn2 then corresponds to the addition of two subsets S, T ∈ ℘ (U) by the symmetric
difference operation, i.e.,

S + T = (S − T ) ∪ (T − S).

For instance, if U = {a, b, c}, S = {a, b}, and T = {b, c}, then S+T = {a, b}+{b, c} =
{a, c} (since the b’s cancel out). With that addition operation on ℘ (U), there is a
vector space isomorphism Zn2 ∼= ℘ (U). As in any vector space, there are many different
basis sets, three of which are given in Table 1. Each row in the table represents the
same abstract vector or ‘ket’ represented in a different basis set. The left-most column
gives the corresponding column vector in Z3

2 (where the superscript t represents the
transpose).

Z3
2 U = {a, b, c} U ′ = {a′, b′, c′} U ′′ = {a′′, b′′, c′′}

[1, 1, 1]
t {a, b, c} {b′} {a′′, b′′, c′′}

[1, 1, 0]
t {a, b} {a′} {b′′}

[0, 1, 1]
t {b, c} {c′} {b′′, c′′}

[1, 0, 1]
t {a, c} {a′, c′} {c′′}

[1, 0, 0]
t {a} {b′, c′} {a′′}

[0, 1, 0]
t {b} {a′, b′, c′} {a′′, b′′}

[0, 0, 1]
t {c} {a′, b′} {a′′, c′′}

[0, 0, 0]
t ∅ ∅ ∅

Table 1: Ket table giving the isomorphisms Z3
2
∼= ℘ (U) ∼= ℘ (U ′) ∼= ℘ (U ′′)

Taking U as the computational basis, it is easy to see, for example, that {a′}, {b′},
and {c′} also form a basis, the U ′-basis, since:

{b′}+ {c′} = {b′, c′} = {a, b, c}+ {b, c} = {a},
{a′}+ {b′}+ {c′} = {a′, b′, c′} = {a, b}+ {a, b, c}+ {b, c} = {b}, and
{a′}+ {b′} = {a′, b′} = {a, b}+ {a, b, c} = {c}.

4.2 von Neumann’s two quantum processes

John von Neumann postulated two and only two types of quantum processes: Type I
are the state reductions and Type II are the evolutions according to the Schrödinger
equation [58]. What is the basic idea? We have already seen that the basic idea in
Type I state reduction is a process of making distinctions. Hence the natural definition
of the other Type II processes would be processes that don’t make distinctions. The
distinctness of two (normalized) quantum states ψ and ϕ is their inner product ⟨ψ|ϕ⟩.
If the inner product is zero, they are totally distinct with no ‘overlap.’ If the inner
product is one, then there is total overlap, i.e., they are the same state. Hence the
basic idea of a Type II process is one that doesn’t make distinctions so the measure
of the indistinctness of distinctness of two quantum states, i.e., the inner product, is
preserved–which is a unitary transformation. The connection to the solutions to the
Schrödinger equation is given by Stone’s theorem [54].

16



Another way to characterize a unitary transformation is that it transforms
orthonormal basis sets into orthonormal basis sets. There are no inner products in
vector spaces over finite fields like Z2 in our pedagogical model QM/Sets. Hence the
corresponding idea in a finite vector space is a transformation that is non-singular,
i.e., transforms basis sets into basis sets so that is the Type II process assumed in the
model.

4.3 Probabilities in QM/Sets

The Dirac brackets in QM give the “overlap” between two states where the minimal
overlap is ⟨ψ|ϕ⟩ = 0 for states that are orthogonal (or disjoint) and maximal overlap
is ⟨ψ|ϕ⟩ = 1 when they are the same state. In QM/Sets, there is an obvious notion of
overlap, the cardinality of the intersection, that takes its values in the natural numbers
N. That is, for S, T ∈ ℘ (U):

⟨S|UT ⟩ := |S ∩ T |.

The ket |T ⟩ denotes the ket of T ∈ ℘ (U) and is in that sense basis-independent,
but the ‘bra’ ⟨S|U must be taken as basis-dependent as indicated by the subscript U
since the intersection S ∩ T requires that both S and T be subsets of U .

The unitary transformations in QM are replaced by the non-singular transforma-
tions in the vector space ℘ (U) that carry a basis set to a basis set. Accordingly, that
preserves the overlaps instead of the inner products. For instance in the non-singular
transformation from the U -basis to the U ′-basis, i.e., {a} ⇝ {a′}, {b} ⇝ {b′}, and
{c}⇝ {c′}, we have:

⟨S|UT ⟩ = ⟨S′|U ′T ′⟩.
Preservation of bra-kets under non-singular transformations

A projection operator P on a vector space is an operator that is idempotent, i.e.,
PP = P . For the universe set U with the disjoint basis {{ui}}ui∈U , the projection
operator {ui} ∩ () : ℘ (U) → ℘ (U) takes S to {ui} ∩ S which is {ui} if ui ∈ S
and ∅ otherwise. The characteristic function χ{ui} : U → Z2, with value 1 at ui,
else 0, defined the same projection operator χ̂{ui} = {ui} ∩ () : ℘ (U) → ℘ (U) by
χ̂{ui} {uj} = χ{ui} (uj) {ui}. Then the sum of these projection operators over the
whole U -basis is the identity operator:∑

ui∈U {ui} ∩ () =
∑
ui∈U χ̂{ui} = I() : ℘ (U) → ℘ (U).

In QM, given an orthonormal (ON) basis {|ui⟩}ni=1 of the Hilbert space V , the
characteristic function χ{ui} : U → [0, 1] defines the projection operator χ̂{ui} =
|ui⟩ ⟨ui| : V → V and the sum of the ket-bra projection operators is also the identity
operator: ∑n

i=1 |ui⟩ ⟨ui| =
∑n
i=1 χ̂{ui} = I : V → V

Completeness of the ket-bra sum
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Now ⟨{ui} |US⟩ = ⟨S|U {ui}⟩ = |S ∩ {ui}| = χS (ui). Then any bra-ket ⟨S|UT ⟩ can be
resolved using the ket-bra sum:∑

ui∈U ⟨S|U {ui}⟩ ⟨{ui} |UT ⟩ =
∑
ui∈U χS (ui)χT (ui) = |S ∩ T | = ⟨S|UT ⟩

which is the QM/Sets version of the QM:

⟨ψ|φ⟩ =
∑
i ⟨ψ|ui⟩ ⟨ui|φ⟩

Resolution of unity by ket-bra sum

In QM, the magnitude or norm of a vector ψ is often denoted |ψ| =
√
⟨ψ|ψ⟩ but

that conflicts with our notation |S| for cardinality, so we will use ∥ψ∥ =
√
⟨ψ|ψ⟩ for

the norm in QM and the corresponding norm in QM/Sets is:

∥S∥U =
√
⟨S|US⟩ =

√
|S|

Norm in QM/Sets

which takes values in the real numbers R. Applied to the resolution of unity:

∥S∥2U = ⟨S|US⟩ =
∑
u∈U ⟨S|U {ui}⟩ ⟨{ui} |US⟩ = |S|

which in QM is:

∥ψ∥2 = ⟨ψ|ψ⟩ =
∑
i ⟨ψ|ui⟩ ⟨ui|ψ⟩ =

∑
i ⟨ui|ψ⟩

∗ ⟨ui|ψ⟩

where ⟨ui|ψ⟩∗ = ⟨ψ|ui⟩ is the complex conjugate of ⟨ui|ψ⟩.
Since the non-zero amplitudes are replaced by ones in the move to support vectors,

the outcomes are assumed equiprobable in QM/Sets. In QM, a vector can be normal-
ized at any time, but in QM/Sets, normalization is only done when probabilities are
computed, so to better draw out the analogies, we will not necessarily assume a vector
ψ is normalized. When a state ψ is measured in the measurement basis {|ui⟩}, then
the probability of obtaining ui is given by the Born Rule:

Pr (ui|ψ) = ∥⟨ui|ψ⟩∥2

∥ψ∥2

and the corresponding Born Rule formula in QM/Sets is:

Pr (ui|US) =
∥⟨{ui}|US⟩∥2

U

∥S∥2
U

= |{ui}∩S|
|S| =

{
1/ |S| if ui ∈ S

0 if ui /∈ S
.

And given a numerical attribute f : U → R, then f−1 (r) ∩ () : ℘ (U) → ℘ (U) is a
projection operator and the probability of getting r ∈ f (U) when measuring S is:

Pr(r|S) = ∥f−1(r)∩S∥2

∥S∥ = |f−1(r)∩S|
|S| .
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In QM, if Pr is the projection operator to the eigenspace of the eigenvalue r, then the
probability of getting that eigenvalue when measuring |ψ⟩ is:

Pr (r||ψ⟩) = ∥Pr|ψ⟩∥2

∥|ψ⟩∥2 .

In this manner, QM/Sets produces a simplified version of QM over support sets.
The crucial application is the two-slit experiment.

4.4 The two-slit experiment: the setup

The two-slit experiment is the best example to illustrate the basic ideas of QM. Indeed,
according to Richard Feynman, it contains “the only mystery” [29, Sec. 1.1]. The
pedagogical model greatly simplifies the model but reproduces “the only mystery” in
the form of the question: “With no detection at the slits, how does the particle get
from the two-slit screen to the detection wall without going through one of the slits–
in which case there would be no interference effects?”. The mystery is often covered
up with a bit of magic or legerdemain called “wave-particle complementarity.” With
no detection at the slits, the particle suddenly turns into a wave which, in a certain
sense, “goes through both slits” like in the classroom ripple-tank demonstration [43]
using classical waves. But a wave cannot register at just one point on the detection
wall so the wave thoughtfully turns back into a particle after the interference effects.
The actual explanation can be easily seen in the pedagogical model without any such
magic.

The assumed discrete dynamics is that of the non-singular transformation where
in each time period, the U -basis turns into the U ′-basis, i.e., {a} ⇝ {a′} = {a, b},
{b} ⇝ {b′} = {a, b, c}, and {c} ⇝ {c′} = {b, c}. The three states {a, b, c} of the one
particle system represent vertical distance positions with the particle emitter at {b}
and the two slits on the screen at {a} and {c} as illustrated in Figure 7.

Fig. 7 Setup for the two-slit experiment

In the first time period, the particle moves from the particle emitter at {b} to
the screen at {b′} = {a, b, c}. Then the first state reduction takes place where the

particle either hits the screen at {b} with probability Pr ({b} |U {a, b, c}) = |{b}∩U |
|U | = 1

3 .
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Otherwise, the particle arrives at the screen in the superposition state {a, c} with

probability Pr ({a, c} |U {a.b.c}) = |{a,c}∩{U}|
|U | = 2

3 . Then we have the two cases of

Case 1 of detectors at the slits or Case 2 of no detectors at the slits.

4.5 Case 1: Detection at the slits

The detectors distinguish between the two states in superposition at the screen:
{a, c} = {Going through slit 1, Going through slit 2} so the superposition is reduced
to one of the components. If it is reduced to {a} = {Going through slit 1} , then it
evolves to the superposition {a, b} at the detection wall which distinguishes between
the two components so the superposition {a′} = {a, b} reduces to {a} or to {b}
with probability 1

2 each. Similarly, if the {a, c} superposition at the screen reduces
to {c} = {Going through slit 2}, then it evolves to the superposition {c′} = {b, c} at
the detection wall. And then the wall distinguishes between those two components so
they reduce to {b} or {c} with 1

2 probability each. The probabilities multiply along
the paths (Feynman Rule 3.5 law of multiplication of probabilities [36, 111]), so we
have at {a} and {c} on the wall:

Pr (a|wall) = 2
3
1
2
1
2 = 1

6 = Pr (c|wall).

There are two paths for the particle to reach {b} at the wall, so (Feynman rule 3.3
law of addition of probabilities [36, 110]) those probabilities add so that:

Pr (b|wall) = 2
3
1
2
1
2 + 2

3
1
2
1
2 = 1

6 + 1
6 = 1

3 .

The bar graph of the Case 1 probabilities is illustrated in Figure 8.

Fig. 8 Probabilities of the particle (starting at the emitter) of hitting the detection wall

4.6 Case 2: No detection at the slits

In Case 2, there is no state reduction in the superposition {a, c} at the screen so
that superposition state, which is below-the-water in the iceberg picture, i.e., in the
quantum world, continues to evolve according to the dynamics:
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At the screen {a, c} = {a}+ {c}⇝ {a′}+ {c′} = {a, b}+ {b, c} = {a, c} at the wall.

Then the detection wall distinguishes between the components of {a, c} at the wall so
{a} or {c} occur with 1

2 probability each. Then the probabilities at the wall are:

Pr (a|wall) = 2
3
1
2 = 1

3 = Pr (c|wall) and Pr (b|wall) = 0.

The bar graph of the Case 2 probabilities is illustrated in Figure 9.

Fig. 9 Probabilities of the particle (starting at the emitter) of hitting at the detection wall

Immediately we see the striped pattern due to the interference–in this case the
destructive interference at b in the evolution:

At the screen {a, c}⇝ {a, b}+ {b, c} = {a, c} at the wall.

4.7 Analysis of the two-slit experiment

This is the analysis in the simplified pedagogical model of QM/Sets that illustrates the
basic ideas involved in the two-slit experiment. To complete the explanation, we need
to bring in the iceberg/partition-lattice picture to illustrate the two cases using the
partition lattices. At the screen, the two states of {a} = {Going through slit 1} and
{c} = {Going through slit 2} are classical above-the-water states, neither of which
occurs in Case 2 of no detection at the slits. As Feynman put it: “We must conclude
that when both holes are open it is not true that the particle goes through one hole
or the other.” [26, 536] Hence the question: “In Case 2, which slit does the particle
go through?” falsely assumes that one of those two classical events occurs. This is
an example of trying to fit quantum (below-the-water) events into a classical (above-
the-water) framework of thinking so it appears to be a mystery how the particle can
get to the detection wall without one of the classical states of going through one
of the slits occurring. The dead end of the reasoning using classical states is what
prompts the magic of “particle-wave complementarity” to picture the quantum particle
as suddenly turning into a classical wave “going through both slits.” But that is not
what happens. Since we interpreted superposition non-classically as indefiniteness and
since the particle retains the indefinite state {a, c} in Case 2, the particle evolves in
the below-the-water quantum world of indefiniteness as illustrated in Figure 10.
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Fig. 10 Case 2 evolution of the particle in the superposition state {a, c} which is in the quantum
world

The partition lattice is a super-simplified picture of reality which consists of
the classical reality of fully definite states and the quantum world of indefinite
superposition mixed and pure states.

1. Since von Neumann’s Type I state reductions result from making distinctions, they
are always represented by upward arrows (from indefinite to more definite states)
in the partition lattice.

2. The von Neumann Type II evolutions are represented by the non-upward arrow
(horizontal or downward) arrows in the partition lattice.

Figure 11 illustrates both the (under-water or quantum world) evolution (dotted
horizontal arrows) from screen to the wall in Case 2 and then the state reductions
(upward solid arrows) at the wall.

Fig. 11 Two von Neumann processes in Case 2

The partition lattices can also be used to represent the state reductions and evo-
lutions in Case 1. Again in Figure 12, the dotted (non-upward) arrows are Type II
evolutions and the solid upward arrows are state reductions.

In both Case 1 and Case 2, there was the same evolution from the emitter to the
screen and the same state reduction at the screen as illustrated in Figure 13.
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Fig. 12 Two von Neumann processes in Case 1

Fig. 13 Evolution from emitter to screen and state reduction at the screen

5 Linearization: Two-way street between sets and
vector spaces

5.1 The Yoga of Linearization

There is an extensive two-way connection between set concepts and vector space con-
cepts. It gives a translation dictionary between sets and vector spaces. In enumerative
combinatorics, set concepts are correlated with the corresponding concepts in finite
vector spaces of order q = pn (where p is a prime) so the vector space concept is called
the “q-analog” [33]. But we are concerned with the dictionary relating set concepts to
the corresponding vector space concepts in the Hilbert spaces of QM so we will call
them “QM-analogs.” This is an important tool to illustrate the basic ideas of QM by
distilling them down to the corresponding (support) set concepts as we have seen with
QM/Sets and the analysis of the two-slit experiment.

Yoga of Linearization

Given a basis set of a vector space, apply the set concept to the basis set
and then what is linearly generated

is the corresponding or QM-analog vector space concept.

We start by taking U to be a basis set of a finite-dimensional Hilbert space V , e.g.,
an orthonormal eigenbasis for an observable. Then the set notion of a subset S ⊆ U
linearly generates a subspace [S] ⊆ V . The cardinality |S| of S equals the dimension
dim ([S]) of [S]. A real-valued numerical attribute on U is a function f : U → R. This
set concept generates a Hermitian operator f̂ : V → V by the equation f̂ui = f (ui)ui
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(where we ignore the difference between set element ui and basis vector |ui⟩). When

appropriate, the QM-analog is indicated by the ĥat on the set version as in f̂ and
f . Each value r of f : U → R is an eigenvalue of f̂ , each subset S ⊆ f−1(r) is a

constant set of f so the set version of the eigenvector-eigenvalue equation f̂ui = rui
is f ↾ S = rS, which means f restricted to S is a constant set of f with value r.

Each block Bj in a set partition π on U generates a subspace [Bj ] and the set of
those subspaces π̂ = {[Bj ]}Bj∈π is a direct sum decomposition (DSD) of V as we would

expect from the q-analog: “Direct-sum decompositions are a q-analog of partitions of
a finite set.” [6, 764]

A set partition π = {B1, ..., Bm} on U could have been defined as a set of non-
empty subsets so that each non-empty subset S ⊆ U is uniquely expressed as the
union of subsets of the Bj ’s, i.e., S = ∪Bj∩S ̸=∅Bj ∩S. Similarly, a DSD can be defined
as a set of non-trivial subspaces {Vj}mj=1 of V such that every non-zero vector in V is
uniquely expressed as the sum of vectors from the Vj ’s. When the partition on U is
f−1 =

{
f−1 (r)

}
r∈f(U)

, then the QM-analog DSD corresponding to f−1 is the DSD

f̂−1 =
{[
f−1 (r)

]}
r∈f(U)

of eigenspaces of the Hermitian operator f̂ : V → V . If f is

just an attribute defined by a characteristic function χS : U → {0, 1}, then the QM-
analog operator χ̂[S]ui = χS (ui)ui is the projection operator projecting to the space

[S]. The spectral decomposition of f̂ is:

f̂ =
∑
r∈f(U) rχ̂[f−1(r)].

Then we can work backwards to see that the set-version of the spectral decomposition
for the numerical attribute f is obtained by “taking off the (operator) hats”:

f =
∑
r∈f(U) rχf−1(r).

An important example of the correlations starts with a number of numerical
attributes f, g, ..., h : U → R all defined on the same basis set U . Then the QM-analog
Hermitian operators f̂ , ĝ, ..., ĥ are all commuting operators (since U provides a com-
mon basis of simultaneous eigenvectors). Moreover, if the join f−1∨g−1∨...∨h−1 = 1U ,
i.e., has all blocks of cardinality one, then each element ui ∈ U is uniquely specified
by the ordered-tuple of attribute values (f (ui) , g (ui) , ..., h (ui)). We might say that
numerical attributes defined on the same set are compatible and if their join is the
discrete partition 1U , then they are a Complete Set of Compatible Attributes, a CSCA.

Similarly, each inverse-image partition f−1 =
{
f−1 (r)

}
r∈f(U)

defines the QM-

analog DSD f̂−1 =
{[
f−1 (r)

]}
r∈f(U)

. The join of DSDs of commuting operators

f̂−1 ∨ ĝ−1 ∨ ... ∨ ĥ−1 is defined as the DSD of non-zero subspaces obtained by the

intersections of the eigenspaces of the operators. If the join f̂−1 ∨ ĝ−1 ∨ ... ∨ ĥ−1 of
those DSDs is the DSD 1̂U of subspaces of cardinality one or rays (instead of blocks of
cardinality one), then the set of operators is said to be complete, i.e., a Complete Set
of Commuting Operators, a CSCO [11, 57]. And, as in the set case, each eigenvector
ui in the basis set of simultaneous eigenvectors U is then uniquely characterized by
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the ordered-tuple of eigenvalues (f (ui) , g (ui) , ..., h (ui)). That set version of a CSCA
shows the basic idea behind Dirac’s CSCOs.

These correlations (using ĥat notation) are summarized in Table 2.

Set math QM-analogs

Subset S ⊆ U = {u1, ..., un} Subspace [S] ⊆ V

Numerical attribute f : U → R Hermitian op. f̂ui = f (ui)ui
Constant set f ↾ S = rS, r ∈ f (U) Eigenvector f̂v = rv

Value r of f Eigenvalue r of f̂
Set of constant r-sets ℘

(
f−1 (r)

)
Eigenspace of r,

[
f−1 (r)

]
Partition: f−1 =

{
f−1 (r)

}
r∈f(U)

Add ĥat for DSD: f̂−1 =
{[
f−1 (r)

]}
r∈f(U)

χ-function χf−1(r) : U → {0, 1} Projection op. χ̂f−1(r)ui = χf−1(r) (ui)ui

Spectral decomp. f =
∑
r∈f(U) rχf−1(r) Add ĥats: f̂ =

∑
r∈f(U) rχ̂f−1(r)

Num. attrib. f, g, ..., h : U → R same U Add ĥats for commuting op.: f̂ , ĝ, ..., ĥ

U = same domain of f, g, ..., h U = Simultaneous eigenvectors f̂ , ĝ, ..., ĥ

f−1 ∨ g−1 =
{
f−1 (r) ∩ g−1 (s) ̸= ∅

}
f̂−1 ∨ ĝ−1 =

{[
f−1 (r)

]
∩
[
g−1 (s)

]
̸= {0}

}
f−1 ∨ g−1 ∨ ... ∨ h−1 = 1U f̂−1 ∨ ĝ−1 ∨ ... ∨ ĥ−1 = 1̂U

ui ↔ (f (ui) , g (ui) , ..., h (ui)) ui ↔ (f (ui) , g (ui) , ..., h (ui))
Set version CSCA Dirac’s CSCO

Table 2: Correlations between set concepts and QM-analog concepts

5.2 Non-commutativity

In the early days of QM, the non-commutativity of observables seemed like a key
characteristic of QM as opposed to classical mechanics, e.g., Dirac’s q-numbers (linear
operators) versus the classical c-numbers [12]. But this seems to put the emphasis in
the wrong place. After all, the non-commutativity of matrix multiplication is a feature
of vector spaces per se so the emphasis should be put on the quantum states forming
a vector space in the first place–which puts the emphasis back on superposition rather
than non-commutativity.

The vector space version of a set partition is a direct sum decomposition or DSD.
What is usually taken as “quantum logic” is the logic of (closed) subspaces of a Hilbert
space [7]. Since subspaces are the vector space version of subsets, that quantum logic
of subspaces is the quantum version of the Boolean logic of subsets. Since partitions
are category-theoretically dual to subsets and since DSDs are the vector space version
of partitions, there is another dual quantum logic of direct sum decompositions [16],
which could also be viewed as the quantum logic of observables (since the observ-
able differs from its DSD of eigenspaces by including the eigenvalues associated with
the eigenspaces–just as a numerical attribute f : U → R differs from the partition{
f−1 (r)

}
r∈f(U)

only by including the numbers assigned to the blocks).

In forming the join of two partitions on the same U , we take the blocks of the join
to be the non-empty intersections of the blocks from the partitions. But given two
partitions on different universe sets U and U ′, the intersection is completely undefined.
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But that changes in the vector space version of partitions, DSDs. A DSD is a basis-free
notion. It is a set of subspaces and subspaces always have intersections as subspaces.
That is the basic idea that creates the new possibilities of commuting DSDs, non-
commuting DSDs, and even conjugate DSDs.

Let {Vj}mj=1 and {Wj′}m
′

j′=1 be two DSDs of a vector space V . We take the set of

non-zero intersections Vj ∩Wj′ ̸= {0} in a join-like operation. If the DSDs were the
DSDs of eigenspace DSDs of two observables F,G : V → V , then the non-zero vectors
in the blocks would be simultaneous eigenvectors for the two observables. But the
big difference is that the vectors in those blocks need not span the whole space. The
join-like operation is only a “proto-join.”

Let SE be the vector space spanned by the vectors in those non-zero intersections
Vj ∩Wj′ . If those two DSDs were the eigenspace DSDs of two observable operators F
and G, then it is a theorem [21, 68] that: SE is the kernel (i.e., subspace of elements
mapped to zero) of the commutator [F,G] = FG−GF of the operators. Now F and
G commute if the commutator is the zero operator, i.e., if its kernel SE is the whole
space V in which case the proto-join of the two DSDs is a proper join, a join we
have already seen in the analysis of Dirac’s CSCOs. If SE ≠ V , then the two DSDs
are non-commuting and if SE = {0}, then the DSDs are conjugate. In the transition
from an observable operator to its eigenspace DSD, the information that is lost is the
distinct eigenvalues associated with eigenspaces. But that information is irrelevant for
the definitions of commuting, not commuting, and conjugate so those are, as we have
seen, properties of the DSDs.

This distinction between linear operators and DSDs is more pronounced when
we move to other vector spaces. In the spaces over Z2, the only linear operators are

projection operators but far more general are the DSDs
{[
f−1 (r)

]}
r∈f(U)

in Z|U |
2

resulting from numerical attributes f : U → R.
Commutativity. To illustrate this analysis, let U = {u1, ..., un} in QM/Sets.

Then any two numerical attributes f, g : U → R defined on that same U with have
inverse-image partitions f−1 =

{
f−1 (r)

}
r∈f(U)

and g−1 =
{
g−1 (s)

}
s∈g(U)

on U and

the blocks of the two partitions will generate two DSDs on Zn2 ∼= ℘ (U). The subspaces
in the join-like operation on those two DSDs will be the subspaces generated by the
blocks of f−1 ∨ g−1 which contain all basis elements {u1} , ..., {un} of ℘ (U) so the
proto-join of the DSDs spans the whole space and is thus a join of DSDs. That is an
example of commuting DSDs.

Non-commutativity. To consider an example of non-commutativity, consider
the U -basis and the U ′-basis of Z3

2 given in Table 1 and used in the two-slit example.
Consider the numerical attribute f : U = {a, b, c} → R of f (a) = 1, f (b) = 2, and
f (c) = 3. On the U ′-basis, consider the numerical attribute g : U ′ = {a′, b′, c′} → R
where g (a′) = 1 = g (b′) and g (c′) = 2. Then the DSD determined by f is the set of
three subspaces: {{∅, {a}} , {∅, {b}} , {∅, {c}}}. The DSD determined by g is the set of
two subspaces: {{∅, {a′} , {b′} , {a′, b′}} , {∅, {c′}}}. We may then express the g-DSD
in the computational U -basis as: {{∅, {a, b} , {a, b, c} , {c}} , {∅, {b, c}}}. Then when we
take the join-like operation or proto-join by taking all the intersections of subspaces,
then many are just the zero space such as {∅, {a}}∩{∅, {a, b} , {a, b, c} , {c}} = {∅}, but
only one intersection is non-trivial: {∅, {c}}∩{∅, {a, b} , {a, b, c} , {c}} = {∅, {c}} = SE .
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However, the vectors in this subspace hardly span the whole space so those two DSDs
are non-commuting but not conjugate.

Conjugacy. The vector spaces Z2m
2 for m > 1 have a special structure much

like the Fourier transformation between conjugate variables in the full math of QM.
The simplest such space for m = 2 is Z4

2
∼= ℘ (U) for U = {a, b, c, d}. From the U -

basis, we canonically construct the Û -basis for Û =
{
â, b̂, ĉ, d̂

}
where the circumflex

operation (unrelated to our previous ĥat notation) just leaves out the element under

the circumflex. Thus {â} = {b, c, d},
{
b̂
}

= {a, c, d}, {ĉ} = {a, b, c}. and
{
d̂
}

=

{a, b, c}. And, as in the Fourier transformation, the reverse operation on the Û -basis

gives back the U -basis. Thus
{
b̂, ĉ, d̂

}
= {a, c, d} + {a, b, d} + {a, b, c} = {a} since

all the elements but a occurs an even number of times so they cancel out in the
addition mod(2) while a occurs an odd number of times. And it works similarly for

the other elements, e.g., {b} =
{
â, ĉ, d̂

}
and so forth. For Z2m

2 of even dimension, the

circumflex-vectors form a basis but not for vector spaces over Z2 of odd dimension.

And for U = {a, b}, {â} = {b} and
{
b̂
}

= {a}, so Û -basis in that case is the same

as the U -basis. That is why the Fourier-like transform is for vector spaces over Z2 of
even dimension greater than two.

In QM, the Fourier transformation gives conjugate bases which gives the conju-
gacy between the quantum variables such as position and momentum [10, Sec. 4.1.2].
In our example of Z2m

2 (m > 1), any U -basis has a conjugate Û -basis. As in the
quantum case, let us assign different values to the different basis vectors so the DSD
coming from the U -basis is: {{∅, {u1}} , ..., {∅, {u2m}}} and from the Û -basis, the DSD
is {{∅, {û1}} , ..., {∅, {û2m}}}. When the DSD from the Û -basis is expressed in the
computational U -basis, then it is clear that all the intersections of the subspaces from
the two DSDs are the zero space {∅} so those DSDs are conjugate.

6 The basic idea in state reduction (“measurement”)

6.1 State reduction = Superposition−1

Superposition adds together definite (eigen) states to give an indefinite state. State
reduction results from an interaction that makes distinctions between the indefinite
states of a superposition. Thus state reduction “undoes” what superposition “does.”
The state reduction takes place wherever such an interaction occurs which is almost
certainly at the quantum level. Then it must be detected and amplified to the human
level to form a ‘measurement’ in the anthropomorphic sense.

In the iceberg/partition-lattice representations using support sets, state reduction
is indicated by upward arrows taking an indefinite state to a more definite state by
making distinctions. Support sets get smaller or remain the same. When superposi-
tion is misinterpreted as being like classical wave superposition (definite + definite =
definite), then it is indeed unclear what state reduction is. But when superposition
is interpreted as making an indefinite state out of definite states (definite + definite
= indefinite), then it is easy to see what state reduction does; it makes distinctions
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by partly or wholly distinguishing the states in the superposition state. And distin-
guishing or not distinguishing between the superposed alternative states is precisely
the content of the Feynman rules.

If you could, in principle, distinguish the alternative final states (even
though you do not bother to do so), the total, final probability is obtained
by calculating the probability for each state (not the amplitude) and then
adding them together. If you cannot distinguish the final states even in
principle, then the probability amplitudes must be summed before taking
the absolute square to find the actual probability. [29, Sec. 3.16]

The distinctions or distinguishings between the alternatives has nothing to do with
human observations.

In other words, the superposition of amplitudes ... is only valid if there
is no way to know, even in principle, which path the particle took. It is
important to realize that this does not imply that an observer actually takes
note of what happens. It is sufficient to destroy the interference pattern, if
the path information is accessible in principle from the experiment or even
if it is dispersed in the environment and beyond any technical possibility
to be recovered, but in principle still “out there.”The absence of any such
information is the essential criterion for quantum interference to appear. [63,
484]

The “absence of any such information” means the absence of distinctions or distin-
guishings as in the notion of information-as-distinctions [18].

In his textbooks, Feynman [29, Sec. 3.3] always gave examples at the quantum
level of the two cases: distinguishing or not between the superposed alternative paths.
Consider a neutron that is scattering off the nuclei of atoms in a crystal. If there is no
distinguishing which nuclei was scattered off of, e.g., the nuclei have no spin, then the
amplitude for the neutron to be scattered to some point would be the addition of the
scattering amplitudes off the various nuclei. Since there is no distinguishing physical
event to distinguish between scattering off one nucleus or another, there is no state
reduction in the superposition of the states of scattering off different nuclei so the
amplitudes add.

But if all the nuclei had spin in, say, the down direction while the neutron had spin
up, then in the scattering interaction, one of the nuclei might flip its spin which would
be the quantum level physical event to distinguish that trajectory. Then the probability
of the neutron arriving at the given point with its spin reversed (indicating that a
spin flip had occurred) would be the sum of the probabilities (not the amplitudes) for
those distinguished trajectories over all the nuclei. In that case, the superposition was
reduced (the indefinite became definite) and the nucleus with its spin flipped plays the
role of a detector registering a hit. The spin-state of the nuclei served as a quantum-
level measuring apparatus to distinguish (“measure”) which scattering trajectory was
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taken by the neutron to reach the detector. No macroscopic apparatus was involved
in the state reduction (unlike in the ‘decoherence’ analysis [64]).

6.2 Illustrating state reduction with Weyl’s “pasta machine”
and Feynman’s rules

Hermann Weyl approvingly quoted [60, 255] Arthur Eddington who said that a rela-
tivity theorist carries a measuring rod while a quantum theorist carries a sieve–which
Weyl called a “grating.” Weyl started with a numerical attribute, e.g., f : U → R,
which defined an inverse-image partition or “ grating” or “aggregate [which] is used
in the sense of ‘set of elements with equivalence relation.” [60, 239]. Then he, in effect,
used the yoga of linearization so an “aggregate of n states has to be replaced by an
n-dimensional Euclidean vector space” [60, 256] in QM. The notion of a vector space
partition or “grating” in QM is a “splitting of the total vector space into mutually
orthogonal subspaces” so that “each vector

→
x splits into r component vectors lying in

the several subspaces” [60, 256], i.e., a direct-sum decomposition of the space. After
referring to a partition and its vector space counterpart, a DSD, as a sieve or grating,
Weyl says that “Measurement means application of a sieve or grating” [60, 259], i.e.,
the making of distinctions according to which hole in the grating the particle went
through.

Weyl’s imagery can be illustrated with a “pasta machine” where a ball of pasta
(a quantum particle in a superposition state) has the interaction of going through
different holes with various shapes. The pasta ball can be thought as the indefinite
superposition of the distinct pasta shapes. The two cases of Feynman’s rule are illus-
trated in Figure 14. The left side is the case of the interaction with the pasta grating
distinguishing between the different shapes superposed in the pasta ball.

Fig. 14 Two cases in Feynman’s rule illustrated with Weyl’s pasta-machine grating imagery

On the right side is the null grating that makes no distinctions between the alternative
paths from A to B so the amplitudes add and the absolute square gives the probability
of the pasta-ball-particle going from A to B. The pasta-machine imagery gives the
basic idea in Feynman’s rule where distinguishable alternative paths implies state
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reductions and indistinguishable paths describes unitary evolution by adding the path
amplitudes to get from A to B (in Feynman’s path integral formulation of QM [28]).

The distinguishings have nothing to do with humans. The distinguishings are the
making of distinctions. It has long been suspected that “ information” has a funda-
mental role in QM. This analysis of state reduction and the definition of information
as the quantitative measure of distinctions, called “logical entropy” ([45], [18], [24]),
verifies that idea and illustrates it with upward arrows in the iceberg/partition-lattice
diagrams.

7 The basic idea behind fermions and bosons

Leibniz and Kant both spelled out a basic idea of classical metaphysics. For Leibniz,
it was the Principle of Identity of Indistinguishables (PII) [4, 22]. If objects are fully
definite, then two distinct objects must have some attribute that one has but not the
other. Given two allegedly different objects, by going down far enough, there must be
a distinguishing attribute, otherwise they are identical. Kant expressed the same idea
as the Principle of Complete Determination.

Every thing, however, as to its possibility, further stands under the princi-
ple of thoroughgoing determination; according to which, among all possible
predicates of things, insofar as they are compared with their opposites, one
must apply to it. [37, B600]

In modern terms, classical reality was “definite all the way down” (to paraphrase the
joke about “turtles all the way down”). In the partition lattice, the discrete partition
1U represents the classical world so it satisfies the partition version of Leibniz’s PII :

If u and u′ are indistinguishable by 1U , i.e., (u, u
′) ∈ indit (1U ), then u = u′.

That is only true for the classical-level partition 1U ; all other partitions contain at
least one block with two or more elements which is the support set of a superposition
state and thus non-classical. However, Figure 5 emphasizes that in the Boolean lattice
of subsets, there is definiteness all the way down; the elements a, b, and c are always
fully definite. In contrast, for the partition lattice, full classical definiteness exists only
at the top level in the discrete partition 1U .

Quantum reality is different from classical reality; it is not definite all the way
down.

In quantum mechanics, however, identical particles are truly indistin-
guishable. This is because we cannot specify more than a complete set of
commuting observables for each of the particles; in particular, we cannot
label the particle by coloring it blue. [51, 446]

Since quantum reality is not definite all the way down, this creates the possibility of
two types of particles:
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1. Fermions: the type where the existing level of definiteness was sufficient to uniquely
determine the particle, and

2. Bosons: the type of particle where that limited level of definiteness is insufficient to
uniquely determine the particle so there could be many particles of that type with
the same complete description.

That is the basic idea behind the two types of particles. That basic idea can be modeled
with symmetric and anti-symmetric wave functions, but we are concerned with the
basic idea. There is a sophisticated theorem, the spin-statistics theorem in quantum
field theory [55], that relates the two types of particles to spin, but our purpose is
again to give the basic idea behind having two types of particles in a reality that is
not definite all the way down.

Leibniz’s PII says that a complete description uniquely determines an entity. The
Pauli Exclusion Principle says that a complete CSCO description uniquely determines
a fermion. Weyl emphasizes that the Pauli Principle is just the application of the
Leibniz PII in a reality that is not definite all the way down.

The upshot of it all is that the electrons satisfy Leibniz’s principium identi-
tatis indiscernibilium, or that the electronic gas is a “monomial aggregate”
(Fermi-Dirac statistics). ... As to the Leibniz-Pauli exclusion principle, it is
found to hold for electrons but not for photons. [60, 247]

For a metaphor, consider postal package addresses that were only definite down
to the street number, i.e., country, state, city, postal code, and street number. In a
neighborhood zoned for single family dwellings, i.e., a “ fermionic” neighborhood, the
street-number would have a single family or it would be a vacant lot. In a neighborhood
zoned for multifamily dwellings such as apartment houses, i.e., a “ bosonic” neigh-
borhood, the street-number address would be insufficient to determine the recipient.
There could be many recipients fitting that same street-number address. That differ-
ence is the simple result of the limited addresses. Within the mathematical machinery
of QM, the difference is between anti-symmetric and symmetric wave functions and
between half-integer spin and integer spin, but our goal was to give the basic idea
behind that difference, i.e., in quantum state descriptions not being “definite all the
way down.”

The schematic argument that a complete state description uniquely determines
a particle leads to an antisymmetric state vector for a system of indistinguishable
fermions is summarized as follows as illustrated in Figure 15 There are two numer-

Fig. 15 Setup for argument that fermion systems have antisymmtric state vectors

ically distinct but indistinguishable fermions, e.g., electrons, 1 and 2, and there are
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two ways they could go to states a or c. The amplitude 1 → a and 2 → c is
⟨a|1⟩ ⟨c|2⟩. If the particles were permuted, then the amplitude is Perm1,2 ⟨a|1⟩ ⟨c|2⟩.
Since those two arrangements are indistinguishable, the amplitude for that end state
is the sum of the two amplitudes: ⟨a|1⟩ ⟨c|2⟩ + Perm1,2 ⟨a|1⟩ ⟨c|2⟩. But if we then
try to put the two particles in the same end state b, then by assumption that is
impossible, i.e., has amplitude 0, so Perm1,2 ⟨b|1⟩ ⟨b|2⟩ = −⟨b|1⟩ ⟨b|2⟩, and thus in
general Perm1,2 ⟨a|1⟩ ⟨c|2⟩ = −⟨a|1⟩ ⟨c|2⟩. Those are the basic ideas behind fermions,
as opposed to bosons, and the Pauli exclusion principle.

8 Concluding remarks

The aim of this paper has been to try to explain in intuitive (anschaulich) terms the
basic ideas behind the more puzzling aspects of quantum mechanics. In summary, here
are some of those basic ideas.

1. The basic idea of superposition:
(a) as being the flip-side of abstraction–the combination of entities with some sim-

ilarities and some differences by abstracting away from the differences (making
them indefinite) and being definite only on the similarities,

(b) as being the quantum notion (definite + definite = indefinite) unlike the classical
notion of superposition (definite + definite = definite), and

(c) as being the key feature of quantum states responsible for them forming a vector
space.

2. The basic idea behind quantum amplitudes and the Born rule is shown by the simple
extension of finite probability theory by adding superposition events ΣS in addition
to the usual discrete events S. The n × n matrix representation of superposition
events (unlike classical discrete events) has a vector “square root” of quantum
amplitudes whose square gives the Born rule probabilities for the outcomes of the
superposition event.

3. The basic idea of constructing a pedagogical or toy model of QM, QM/Sets, by
simplifying quantum pure state vectors down to their support sets in a vector space
over Z2.

4. The basic idea of constructing a partition lattice based on a pure state whose
bottom or indiscrete partition has the only block as the support set of the pure
state, whose top or discrete partition is the support of the corresponding completely
decomposed mixed state, and where the intermediate partitions consists of the
support sets of the mixed states resulting from projective measurements of the pure
state.

5. The basic idea of a projective measurement resulting in a mixed state given by the
Lüders mixture operation is shown to be the join operation in the partition lattice
of support sets.

6. The basic idea of a vN Type I process as making distinctions and a vN Type
II processes as not making distinctions so the measure of the indistinctness and
distinctness of two quantum states, i.e., the inner product, is preserved.

7. The basic idea of the partition lattice of a pure state allows intuitive pictures of:
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(a) The iceberg/partition-lattice picture of the division between the fully definite
classical states in the discrete partition at the top and the indefinite states of
the quantum world represented by the rest of the lattice below the top;

(b) Upward moves in the lattice correspond to projective measurements (Lüders
mixture operations) of making distinctions;

(c) Non-upward (horizontal or downward) non-singular moves in the lattice corre-
spond to unitary evolution (not making distinctions); and

(d) The classical world emerges from the quantum world by the making of
distinctions.

8. The basic ideas of the two-slit experiment as shown by its formulation in QM/Sets,
e.g., how to answer the question: “With no detection at the slits, how does the par-
ticle get from the two-slit screen to the detection wall on the other side of the screen
without going through slit 1 or slit 2?”. The table-top ripple-tank demonstration of
Case 2 (no detection at the slits) or evocation of the wave-particle complementary
magic are attempts to use the (misleading) classical (definite + definite = defi-
nite) notion of superposition of waves instead of the (below-the-water) same-math
evolution of the quantum (definite + definite = indefinite) superposition of states.

9. The basic idea of linearization to establish a dictionary relating concepts of sets
math, e.g., real-valued numerical attributes f or partitions f−1, and the corre-
sponding Hilbert space QM-analogs, e.g., Hermitian operators f̂ or direct sum

decompositions f̂−1.
10. The basic idea of non-commutativity of operators in QM was analyzed showing

that this was more an aspect of matrix math in vector spaces so it is not a unique
characteristic of QM and this was illustrated by giving a case of conjugacy arising
from Fourier-like transforms in QM/Sets for Z2m

2 with m > 1.
11. The basic idea of state reduction (“ measurement”) as being the inverse of super-

position where superposition arises by making indefinite the differences between
eigenstates and state reduction results from an interaction that distinguishes
between the superposed states (or paths)–where the two vN cases of a distinguishing
and a non-distinguishing interaction were intuitively illustrated by Weyl’s “pasta
machine” and the Feynman rules.

12. The basic idea at the logical level is distinctions versus indistinctions, differences
versus similarities, distinguishings versus indistinguishings–all represented at the
logical level in the logic of partitions [19].

13. The basic idea of information-as-distinctions is the quantitative version of the logic
of partitions [18]. Since indistinctions (i.e., superpositions) and distinctions (state
reduction = superposition−1) have an ontic role in QM, this verifies the old idea
that the quantitative version of distinctions, i.e., information, has an ontic role in
QM.

14. The basic idea of the two types of particles, fermions and bosons, arises from the
contrast between classical reality as being definite all the way down and quantum
reality as being definite only down to a certain level, i.e., as given by a complete
set of commuting observables (CSCO), so some particles will be uniquely identified
by that limited degree of definiteness (fermions) and other numerically distinct
particles can all have the same limited state description (bosons).
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In the full Hilbert space machinery of QM, all these ‘gears’ mesh together beau-
tifully to make our most highly verified physical theory. In that sense, the theory is
not the problem; the problem is how to intuitively conceptualize the underlying phys-
ical reality. Our approach to understanding that underlying reality has been to break
down the machinery into basic ideas that can be understood in an intuitive manner.
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[44] Lüders, Gerhart. 1951. Über Die Zustandsänderung Durch Meßprozeß. Annalen
Der Physik 8 (6): 322–28.

[45] Manfredi, Giovanni, ed. 2022. ?Logical Entropy – Special Issue.? 4Open, no. 5:
E1. https://doi.org/10.1051/fopen/2022005.

[46] Margenau, Henry. 1954. Advantages and Disadvantages of Various
Interpretations of the Quantum Theory. Physics Today 7 (10): 6–13.
http://dx.doi.org/10.1063/1.3061432.

[47] Maudlin, Tim. 2019. Philosophy of Physics: Quantum Theory. Princeton Univer-
sity Press.

[48] Norsen, Travis. 2017. Foundations of Quantum Mechanics. Cham, Switzerland:
Springer International.

[49] Rota, Gian-Carlo. 1997. Indiscrete Thoughts. Birkhäuser.
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